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Abstract

We identify behavioral responses, defined as “voluntary exposure

benefits,” that have the potential to offset measured costs of climate

change. We quantify these responses for the transportation sector.

We find warmer temperatures and reduced snowfall are associated

with an increase in fatal accidents. While the application of these

results to climate predictions suggests that weather patterns for the

end of the century would lead to 381 additional fatalities per year, the

associated welfare losses are almost completely offset by voluntary

exposure benefits from increased traveling. Our results motivate
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thank Edson Severnini and Sol Hsiang for useful suggestions and are grateful to seminar
participants at 2016 AEA AERE session, CMU Heinz College, UC-Irvine, and USC for
helpful comments.

1



carefully examining behavioral mechanisms to accurately estimate the

welfare effects of climate change.

Key Words: Traffic Accidents, Exposure, Climate Change

JEL Classification Numbers: Q58, Q52, H23, R41

1 Introduction

Understanding the channels by which climate change will affect the economy

is required to estimate the costs of climate change and to develop adaptation

strategies. Extreme heat may result in direct costs such as increased

mortality from heat stress and lower productivity. Economists have also

made clear that individuals are likely to engage in costly defensive activities

to mitigate these outcomes (Harrington and Portney, 1987). For example,

where heat aggravates respiratory illness, individuals may use medication and

air conditioning to reduce exposure to risk (Deschênes et al., 2017; Graff Zivin

and Neidell, 2014). In such cases, measuring direct costs is a lower bound of

the true welfare effects because it omits these defensive expenditures.

Less attention has been paid to situations where climate change generates

costs that are, at least partially, explained by voluntary exposure to risk.

Warmer weather facilitates spending time outdoors. Choosing to spend time

outdoors provides many benefits, but also exposes individuals to air pollution,

crime, UV radiation, and traffic. Where costs from these risks occur as part

of a utility maximizing decision to spend time outside, these costs must be
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offset with the welfare gain from spending time outside. But the costs of

time spent outside in terms of illness or death are often easier to measure

than the benefits.

To understand the welfare consequences of climate change, it is important

to examine exposure to risk. Where climate change aggravates an existing

risk, individuals will engage in costly behavior to avoid exposure to that

risk, but when climate change increases the utility of an activity with an

associated risk, individuals will voluntarily increase exposure to that risk.

We define the resulting welfare effects of the latter case as voluntary exposure

benefits. In the extreme case of an entire sector’s change in observed risk

being caused by voluntary exposure, the net welfare costs of climate change

would be zero or negative. Whether or not an observed increase in risk

is accompanied by additional costs from defensive expenditure or offsetting

benefits can be ascertained by examining exposure. Where individuals avoid

risk, there are additional costs; where individuals engage in more of the

risky activity, there are offsetting welfare benefits. Problematically, in many

empirical settings there is almost no information on exposure to determine

which effect generates the direct cost.

In this paper we analyze these issues in the context of the transportation

sector by estimating the relationship among weather, traffic accidents, and

travel demand. We examine the transportation sector because even small

changes to traffic fatalities will carry large costs. Worldwide, nearly 1.24

million people die in traffic accidents annually (WHO, 2013). To quantify
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the effects of climate change on traffic accidents, we examine the effect of

weather on accidents and generate future outcomes with climate change using

simulated future weather. By exploiting plausibly random daily variation in

temperature, rainfall, and snowfall, we are able to estimate the effect of

weather on transportation outcomes.

We find a large and statistically significant relationship between weather

and traffic fatalities. Unsurprisingly, we find precipitation plays a role

in fatal car crashes. But we also find large effects for temperature. As

temperature rises, an increasing number of fatalities involve pedestrians,

bicycles, and motorcycles, or ultra-light duty (ULD) accidents. Warmer

weather is intuitively linked to more exposure as people will derive utility

from spending additional time outside walking, biking, or motorcycling for

transportation or leisure purposes. We measure this exposure directly by

estimating the demand for ULD trips as a function of weather.

To estimate these effects, we use detailed data on police-reported

accidents, daily travel logs of households, weather, and climate change

prediction data. We find that for a day with temperature above 80◦F there

is an 8.6 percent increase in fatality rates compared with a day at 50-60◦F.

Our estimates indicate that the majority, but not all, of this effect is due

to fatalities involving individuals traveling by ULD modes. We also find

evidence that individuals avoid ULD travel on cold days, while estimates for

demand on hot days are positive but imprecise. While not the predominant

effect, we cannot rule out the possibility that reduced cognitive ability plays a
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role in light-duty vehicle crashes on hot days, and we find some evidence that

drivers avoid trips with light-duty vehicles on the hottest days, consistent

with defensive behavior.

We estimate that the discounted costs of additional traffic fatalities caused

by climate change are $37.6 billion from 2015 to 2099, an amount on the same

order of magnitude as others such as profit changes to the agriculture industry

(Deschênes and Greenstone, 2007; Fisher et al., 2012) and social welfare

effects from criminal activity (Ranson, 2014). But we find that welfare gains

from increased travel almost completely offset these costs. Our results imply

that omitting voluntary exposure behavior from welfare analysis may lead to

a significant overestimate of climate change costs.

2 Literature Review

The economics literature has studied the impact of climate change using

temperature and occasionally precipitation data in a variety of areas such

as agriculture (Deschênes and Greenstone, 2007; Fisher et al., 2012), and

economic growth (Dell et al., 2014). Graff Zivin and Neidell (2014) examine

how weather influences time allocation showing that warmer weather draws

individuals outdoors, possibly exposing them to extreme pollution events.

Our work is related to other literature documenting the relationship

between temperature and cognition ability. Seppanen et al. (2006) document

that performance is 91 percent of optimal performance when the temperature
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is 30 degrees Celsius or 86 degrees Fahrenheit. Since 93 percent of traffic

accidents are caused by human error (NHTSA, 2008), weather could very

well play a role in our setting.

Our study is also related to work on crime and conflict that has found

a strong relationship between heat and violent activity (Hsiang et al., 2013;

Ranson, 2014). Deschênes and Moretti (2009) use mortality data from the

Multiple Causes of Death files and include regressions for motor vehicle

deaths. They find some evidence for a decrease in fatalities from cold weather,

which they conjecture is due to avoided travel.1

Our work is related to the literature on equilibrium adjustments to

shocks. Colmer (2016) estimates the labor market response to temperature

changes in India. This study finds that warmer weather reduces agricultural

productivity. But this change in productivity can at least partly be explained

by a reallocation of labor away from the agricultural sector. Therefore,

the productivity loss is not simply that per worker output is reduced, but

that fewer workers are available. This result highlights the importance of

accounting for labor decisions in computing the costs of weather changes. Our

1Several papers from the traffic safety literature explore the relationships between

weather outcomes and traffic accidents. This literature has primarily estimated the impact

of rainfall or snowfall on accident frequency (Eisenberg, 2004), but does not examine

the relationship with temperature or the impact of climate change. An exception is

Froom et al. (1993), who show that high temperatures are associated with higher rates of

helicopter pilot errors.
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analysis of the temperature-fatality relationship yields a similar conclusion:

we find that warmer weather leads to more fatalities, but this relationship is

defined by an increase in miles traveled by more dangerous modes of travel,

as opposed to an increase in the per mile fatality rate.

We also contribute to a growing literature on avoidance behavior. We

extend the analytical framework presented in Harrington and Portney (1987),

which shows that accounting for avoidance behavior can be critical for

accurately estimating the welfare costs of environmental pollution, and

omitting avoidance behavior can lead to an underestimate of the full welfare

costs. We build on this framework by considering the possibility that

individuals may voluntarily expose themselves to additional costs, and we

find that omitting this behavioral adjustment can lead to an overestimate of

the full welfare costs of an environmental change. The avoidance framework

has been applied empirically in recent work by Deschênes and Greenstone

(2011) and Barreca et al. (2013) in the context of climate change and Moretti

and Neidell (2011), Graff Zivin and Neidell (2013), and Deschênes et al.

(2017) in the context of local air pollution. These studies confirm the

importance of accounting for avoidance behavior by leveraging alternative

empirical approaches. We contribute to the empirical avoidance literature by

evaluating empirically the importance of accounting for voluntary exposure

behavior in the context of traffic accidents in the United States. We find

that behavioral adjustments account for virtually all of the cost changes,

reaffirming conclusions from prior literature that accounting for behavior is
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critical to complete an accurate assessment of an environmental change.

3 Framework for Estimating Welfare Effects

of Climate Change

In this section, we present a simple framework for characterizing the welfare

effects of climate change on traffic accidents. Since traffic accidents are

associated with traveling, we model welfare effects in the context of demand

for and cost of traveling. We model the aggregate demand for travel using

a marginal willingness to pay (MWTP) function v which is dependent on

weather, W , and miles traveled, m, v = v(W,m). We assume that the

cost to travel one mile, which includes monetary and non-monetary costs,

is independent of miles traveled but depends on weather to allow for the

possibility that the probability of an accident depends on weather. To focus

on the effects of daily weather changes on accidents, we assume that other

per mile traveling costs are not affected by weather changes.2 Note that an

increase in the per mile accident cost increases one-for-one the marginal cost

per mile. We denote the marginal cost of a mile traveled by p = p(W ).

We assume that travelers completely internalize all private costs of

2This is a reasonable assumption at the daily level. Other costs of travel, such as

gasoline costs, may be affected by monthly demand or supply shocks stemming from

weather changes. In our empirical analysis, we control for these shocks with monthly level

controls.
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traveling, including the potential accident costs. This implies that travelers,

in deciding how much to drive/walk/bike, accurately recognize the risks

associated with each mode and adjust their traveling in response to changes

in these risks. In our empirical section, we find evidence that travelers do

respond to changes in accident risk, especially for more dangerous weather

events, e.g., heavy rainfall or snowfall.

3.1 Equilibrium and Welfare

In equilibrium, MWTP equals the cost per mile, so that the equilibrium

number of miles traveled, m∗, solves v(W,m∗) = p(W ). Total welfare in

equilibrium, which we measure as consumer surplus, is equal to the difference

between MWTP and marginal cost per mile for all miles traveled:

Welfare =

m∗∫
0

v(W,m)dm− p(W )m∗. (1)

The integral represents total benefits of traveling and the second term in

Equation (1), p(W )m∗, represents the total costs incurred to travelers. This

specification allows weather to change the total cost of traveling through

changing the probability of an accident or through changing the total demand

for travel.
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3.2 Welfare Effects

We compute marginal welfare effects stemming from changes in weather by

differentiating Equation (1) with respect to weather. Applying Leibniz’s rule

for differentiation under the integral sign yields

dWelfare

dW
=
dm∗

dW
v(W,m∗) +

m∗∫
0

∂v

∂W
dm− p(W )

dm∗

dW
− dp

dW
m∗. (2)

The third and fourth terms in Equation (2) represent the traditional measure

of welfare changes due to a change in weather, since they measure how total

costs change in response to a change in weather: −p(W )dm
∗

dW
− dp

dW
m∗ =

− d
dW

[p(W )m∗]. Past studies rely on changes in observed costs to measure

welfare; in our context, the costs are traffic accidents. But these studies

omit potentially relevant sources of welfare, including potential benefits to

market participants. The first and second terms in Equation (2) represent

welfare changes caused by a change in miles traveled and MWTP for miles

traveled. We denote these terms as voluntary exposure. If these terms are

positive, then travelers are receiving voluntary exposure benefits in response

to a change in weather. These benefits are easily explained by the fact that

travelers may have higher demand for traveling when the weather is sunny

and warm. Regardless of the sign of these first two terms, omitting them

completely from the quantification of the welfare effects of climate change

will be inaccurate.

10



Furthermore, the equilibrium condition v(W,m∗) = p(W ) implies that the

first term completely offsets the third term in Equation (2). The offseting

terms represent the welfare benefits and costs stemming from a change in

miles traveled. The costs are completely offset by the change in welfare

benefits that travelers receive from a change in miles traveled. This offsetting

implies that the traditional measure of welfare, which includes −p(W )dm
∗

dW
,

may be grossly inaccurate if most of the changes in costs are due to a change

in miles traveled. In sharp contrast, the derived welfare effects include the

movement of the demand curve for miles traveled (the term
m∗∫
0

∂v
∂W

dm) and a

change in marginal costs of traveling (the term− dp
dW
m∗), where the remaining

terms in Equation (2) offset one another. Therefore, separating a change in

total costs of traveling, − d
dW

[p(W )m∗], from a change in marginal costs of

traveling, − dp
dW
m∗, is necessary to obtain an accurate measurement of the

welfare costs of climate change.

Note that although our framework is applied to the context of traveling

and traffic accidents, it is applicable in other settings with known climate

change impacts. For example, our framework can be easily applied to the

contexts of crime or respiratory disease, where individuals are deciding how

much time to spend outdoors. Demand for outdoor activity is a function of

weather, and the marginal cost of outdoor activity, which includes the risk

of being a part of a crime or aggravating a respiratory disease, is a function

of weather.

Our framework may be extended to multiple markets to obtain more
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precise estimates of climate change impacts. In our context, we differentiate

between alternative modes of travel, since weather changes are likely to

influence each mode differently and accident risk of each mode varies

tremendously. Therefore, we must estimate marginal cost and demand

responses for each mode to make welfare assessments. To compute the welfare

effects of climate changes for multiple markets, researchers can add up the

welfare changes illustrated in Equation (2) across markets. In the empirical

analysis to follow, we isolate welfare effects for two forms of miles traveled

exposed to weather: miles traveled by a light-duty vehicle (LDV) and by

walking, biking, or motorcycling, or any other ultra-light duty (ULD) mode.

This disaggregation proves important for evaluating welfare, motivating a

careful assessment of the type of demand responses measured.

The framework we present is consistent with the philosophy and design

of Integrated Assessment Models (IAMs). These models derive outcomes

from a utility and profit maximizing model of decision making, “integrating

knowledge from two or more domains into a single framework” (Nordhaus

(2013), p.1070). Our approach integrates the climate-traffic accidents and

climate-traveling relationships into one unified framework that we deem

necessary for accurately measuring costs and benefits of climate change.

IAMs increasingly incorporate reduced-form estimates from the climate

econometrics literature that exploits variation in weather. Our framework

motivates for this incorporation to integrate outcomes and any behavior that

may be associated with outcomes. Incorporating outcomes alone, for example
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by adding the relationship between climate change and traffic accidents into

a climate damage function, would provide a misleading assessment of the

costs of climate change, since this procedure would be omitting the private

utility changes from changes in travel due to climate change.

4 Data and Summary Statistics

4.1 Data Sources

4.1.1 Accident, Injury, and Fatality Data

We obtain the population of police-reported accidents for 20 states from the

State Data System (SDS) maintained by the National Highway Traffic Safety

Administration (NHTSA). These data are collected and used by the NHTSA

to provide analysis and policy recommendations for U.S. DOT. The benefit of

these data is that they include not only fatalities, as recorded in other sources,

but also non-fatal accidents. We are primarily interested in fatal accidents

because they are costly and contribute to the overall fatality-temperature

relationship (Deschênes and Greenstone, 2011). Nevertheless, information

on other types of accidents helps to narrow the channels through which the

relationship arises. For example if the primary channel is cognition, we would

expect to see an increase in Property Damage Only (PDO) accidents as well

as fatal crashes.

Accident reports, completed by police officers, are administered at the
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state level. These files are requested annually by the NHTSA from the state

agencies that computerize the data, which are then formatted for consistency

and compiled into the SDS.3 We obtained permission to use SDS data from

Arkansas, California, Florida, Georgia, Iowa, Illinois, Kansas, Michigan,

Minnesota, Missouri, Montana, Nebraska, New Mexico, New York, North

Carolina, Ohio, Pennsylvania, South Carolina, Washington, and Wyoming.4

While there is considerable variation in what each state records, all states

in our sample provide a record of each police reported accident, the day when

the accident occurred, the county where the incident occurred, the types

of parties involved (e.g., light-duty vehicle, motorcycle, bicycle, pedestrian)

and the number of fatalities involved.5 Others variables such as vehicle

3The agencies that usually collect the data are state police, state highway safety

department, or the state’s Department of Transportation.

4Years of coverage in the SDS data include AR 1998-2010, CA 1995-2008, FL 1995-

2008, GA 1995-2008, IA 2001-2005, IL 1995-2009, KS 1994-2008, MI 1995-2009, MN 1995-

2007, MO 1995-2008, MT 1995-2008, NE 2002-2008, NM 1991-2010, NY 2002-2010, NC

1999-2008, OH 2000-2010, PA 1991-1999 and 2003-2010, SC 1997-2008, WA 1994-1996

and 2002-2010, and WY 1998-2007.

5We note that an accident appears in our dataset only if the police file a report. For

Property Damage Only (PDO) accidents, police may have different reporting thresholds

by state, and policy changes may affect reporting rates over time, which we can control for

with county-year-month fixed effects. There is, however, some concern that if bad weather

results in more accidents, departments may become overwhelmed, resulting in a higher

threshold for filing. If this is the case then we underestimate the effect of weather on

accidents. This concern is less important for fatalities, which form our primary analysis,
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information or factors contributing to the accident are subject to considerable

state-level variation in the manner and detail with which they are recorded.

Our main regressions focus on fatalities, PDO accidents, and injuries. Thus

we are able to largely avoid variables that are inconsistently recorded.6 We

also make use of fields that record whether or not the accident involved

any ULD parties, which is almost universally recorded.7 However, in some

robustness checks in the appendix we use a subset of states with intoxicated

or young operators, which are subject to more variation among states and

years.8

4.1.2 NHTS Daily Travel Data

We construct household vehicle miles traveled (VMT) and trip count from

the 1990 National Personal Transportation Survey and the 1995, 2001, and

because they will always be reported (Blincoe et al., 2014).

6Injuries are often but not always recorded as five levels of severity including fatality,

incapacitation, injury, possible injury and property damage only. Incapacitation, injury,

and possible injury are included in ‘crashes with an injury.’ There are two state-year

combinations where injuries cannot be discerned and are dropped from the analysis.

7Besides pedestrian, motorcycle, and bicycle, we also include mopeds, motorized

scooters, pedalcycles, unicycles, and tricycles.

8See Appendix Table A5 for estimation results of these specifications. Because some

states do not disaggregate drugs from alcohol use, we consider drivers to be intoxicated

if they are tested to be beyond the legal limit for alcohol or if they are reported to have

taken any illicit drug.
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2009 National Household Travel Surveys (NHTS). Administered by the U.S.

DOT Federal Highway Administration, these surveys are representative cross

sections of randomly selected U.S. households.9

For our analysis, we use the NHTS travel diaries, which are trip-by-trip

travel logs for a single individual. Each trip reports where the respondent

went (name of place), what time the trip started and ended, why the

respondent made the trip, how the respondent traveled, and the travel

distance of the trip, in miles.10

Staff at the Federal Highway Administration and Oak Ridge National

Laboratory helped us acquire the confidential version of the NHTS data files

that contain either zip code or county of residence for all households in each

sample.11 The restricted files that we acquired include the day, month, and

9Each wave is a survey of the non-institutionalized population of the United States

using Computer-Assistant Telephone Interviewing (CATI) Technology. The 2009 survey

had an average response rate of 19.8 percent.

10The NHTS specifies that the beginning of a travel day is 4:00 a.m. An example of a

recorded trip taken from the 2001 User Guide is the following: “from 7:14 p.m. to 7:22

p.m., return home, by car, 1 mile.”

11The 2001 confidential file includes zip codes for most households but has limited

county information. We assign households to counties using the 2000 U.S. Census zip

code to county cross walk. In a few cases, the zip codes reported in the NHTS data do

not match any zip codes in the 2000 U.S. Census cross walk. In these cases, we use the

2010 U.S. Census zip code to county cross walk or the U.S. Department of Housing and

Urban Development zip code to county cross walk.

16



year of the household’s assigned day of travel.

We take several steps to clean and merge the travel diary data. Since

our unit of analysis is the household, we aggregate trip count and VMT to

the household level for three categories of trips: light-duty, ULD, and public

transit. After minor data cleaning, we arrive at a final sample of 283,857

household by travel day observations.12

4.1.3 Historical Weather Data

Daily weather data come from the National Climatic Data Center (NCDC)

Global Historical Climatology Network-daily, which provides daily minimum

and maximum temperature and total daily rainfall and snowfall for weather

stations in the United States. This database collects and performs quality

control for weather data from land based weather stations around the globe

and is archived by the National Oceanic and Atmospheric Administration.

We use data from 2,607 stations located in all 50 states and the District of

Columbia.13 We use the weather station data to calculate daily, county-level

weather using methods from prior literature.14

12See Appendix A.1 for more details.

13See Appendix Table A3 for more detail.

14Prior literature has documented that missing weather station data can account for a

substantial portion of the variation in weather measures if naively averaged (Auffhammer

et al., 2013). Therefore we impute data using a regression of temperature or precipitation

for a detector on its nearest neighbor. County level weather is generated by averaging

detectors within 200km using inverse distance weighting to the county population centroid
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4.1.4 Weather Prediction Data

CCSM4 is the model used in the Fifth Assessment of the International Panel

on Climate Change to predict future climate and weather under a variety of

scenarios.15 We use scenario RCP6.0, which represents a middle-of-the-road

prediction of future warming and changes in precipitation. It represents

a future with a balanced development of (fossil fuel and non fossil fuel)

energy technology.16 Although it is less carbon development than the CCSM4

RCP8.5 scenario, it still entails 2.3◦C (4.2◦F) of warming in the United States.

In the appendix, we examine outcomes for other climate change scenarios and

as defined by the US Census. Weather is first calculated as a continuous measure for each

county using the stations and then binned. See Appendix A.2 for further details. In

Appendix Table A10, we also present estimates using PRISM data averaged at the county

level and we assign precipitation to rainfall when the average temperature on that date is

above freezing or snowfall when it is below freezing.

15We use the CCSM4 model exclusively for future weather predictions because CCSM4

is one of the few models that report separate outputs for rainfall and snowfall. In

contrast, most models report a single precipitation variable that combines rainfall and

snowfall. Since we expect rainfall and snowfall to have different impacts on accidents and

travel demand, it is crucial to use climate predictions that report separate values for each

precipitation type.

16Other scenarios represent extreme predictions. For example, the RCP8.5 scenario

represents a fossil-fuel intensive future, while RCP4.5 represents a predominantly non

fossil fuel future.
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an alternative model and find that our broad conclusions are unchanged.17

We obtained the CCSM4 RCP6.0 scenario daily weather predictions from

the Centre for Environmental Data archival website, made available through

the British Atmospheric Data Centre. The data include predictions from

January 1, 2006, to December 31, 2100 for 0.94 degree latitude by 1.25

degree longitude grid points throughout the entire world. Available weather

variables include average, minimum, and maximum daily temperatures and

rainfall and snowfall rates.18 The grid used for this prediction is fairly coarse

and many counties do not have a grid point.19 To assign predicted weather

outcomes to counties, we therefore use the same method that was used to

assign observed weather to counties based on weather station locations.20

Based on this we assign weather predictions to each county centroid. We

then assign the county weather predictions to weather outcome bins for our

17We examine outcomes from climate scenarios RCP4.5 and RCP8.5 using CCSM4

output. We also report outcomes using prediction data from the A1B middle-of-the-

road warming scenario presented in the Fourth IPCC Report using the Hadley 3 climate

prediction model, which has been used in prior economics literature. See Appendix Table

A19 and Figure A.2 for the results from these models.

18See Appendix A.2 for more detail of data cleaning.

19This prevents us from using a “cookie-cutter” approach where all counties appearing

in a cell in the weather prediction data get assigned the same weather prediction.

20Here, for every county, we locate every CCSM4 grid point that is within 200 km of

the county’s centroid. The weather predictions at these grid points are then averaged to

predict daily county-level weather using inverse distance weighting to the county centroid.
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econometric specifications.

4.1.5 Other Data Sources

To predict the change in fatalities nationwide, we require the average daily

fatality rate by county, which the accident files provide for only 20 states.

The Fatality Analysis Reporting System (FARS) tracks annual automobile

fatalities for all states and provides information on the county in which the

fatality occurred. This allows us to calculate average daily fatality rates from

which to project changes in future fatalities. We sum the fatalities recorded

by FARS data from 2000-2009 for each county and divide by the number of

days to calculate this baseline fatality rate.21

4.2 Summary Statistics

Table 1 presents summary statistics for our two primary datasets used in the

estimation. Panel A describes some key statistics of the SDS accident data

by Census Region. Of the 46 million accidents in our data, 267,984 record

a fatality, the vast majority of which do not involve a ULD mode. When

aggregated by county-day, our unit of observation, we record the count of

incidents for 6.79 million county-day observations, and where no incidents

21We also use the FARS data from 1975 to 2013 in the appendix as a check on our main

fatality results. See Section A.3 for more detail and Appendix Table A10 for results.
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occur, the day is assigned a count of zero.22 In the average county there are

7.6 accidents per day per 100, 000 people, and 0.058 fatalities per day per

100, 000. The summary statistics by census region also reveal that there is

considerable variation in temperature, rainfall, and snowfall among regions.23

Panel B describes the NHTS household travel survey data on trip count

and VMT per household. Because the trip data are a random sample, they

do not capture the total number of trips or miles driven in a county but have

the benefit of wider coverage with observations in the majority of counties

in all 50 states and the District of Columbia and are collected through the

course of a year. The average household in our sample drives 54.2 miles using

LDV modes and 0.8 miles per day using ULD modes with a total of 6.4 trips.

Panels C, D and E present the weather statistics used in our simulation.

The sample includes all county-day measures in all states. Panel C depicts

the observed weather data for 2000-2009, Panel D shows CCSM4 RCP6.0

predictions for 2006-2009, and Panel E has CCSM4 RCP6.0 scenario for

2090-2099.24 Comparing Panels C and D we can see that in many sub-regions

22We assume that if a county has observations in a given year, all days where no

accidents are recorded are assigned a zero.

23This regional variation without location based fixed effects may be cause for concern

if, for example, colder climate is correlated with public transportation in cities like New

York, Philadelphia, and Chicago, while low-density car oriented cities like Los Angeles

and Atlanta are located in warm regions.

24In Appendix Table A3 we report disaggregated statistics by state for our observed

weather station data for 2000-2009.
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CCSM4 predicts 5th quantiles of temperatures in 2006-2009 that are colder

than observed in the actual weather data from 2006-2009, while the median

and 95th quantile are predicted to be slightly hotter than actually observed.

This indicates that the baseline CCSM4 data display excessive dispersion

and that an error correction method targeting the mean may not adequately

correct the extreme events. Comparing Panel D with Panel E we note that

nationally CCSM4 predicts warmer temperatures, an increase in rainfall (0.11

cm at the 95th quantile), and much lower snowfall. Panels C, D and E also

demonstrates the importance of correcting future climate change weather

predictions to baseline modeling discrepancies. Without this error correction,

one might conclude that global warming would change temperatures more

than CCSM4 predicts, because CCSM4 2006-2009 is a warmer baseline than

the observed data. In our application where snowfall is important, without

error correction the naive comparison of observed data with CCSM4 2090-

2099 would suggest that climate change will increase snowfall for all regions

except the Northeast. We briefly discuss the correction methodology we

develop in section 6 with a fuller discussion in the Appendix.
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5 Estimating the Effect of Weather on

Accidents and Travel Demand

5.1 Estimation Methodology

This section details the econometric framework we use to determine the

effects of weather on accidents and travel demand. Our main analysis uses a

Poisson regression model because the distributions of our dependent variables

are nonnegative and skewed. We first describe the estimation of accidents

that is the framework used for fatalities, crashes involving ULDs and crashes

involving only LDVs. Fatalities are far more expensive than injuries and PDO

accidents and are our primary focus, but we also examine these categories

for completeness and to help examine the reason for fatality changes. Next

we describe the estimation of travel demand in terms of daily trip count and

miles per trip for LDVs, ULD modes, and public transit.

5.1.1 Accidents

We chose a Poisson model for our initial analysis based on several aspects

of our data. Accident counts are all non-negative, integer-valued random

variables. For data characterized as a counting process, the Poisson

distribution is the benchmark model (Cameron and Trivedi, 2013). Poisson

regression will yield consistent estimates provided the conditional mean is
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correctly specified.25

We assume that the count of accidents on date d in county c given xd,c

is Poisson distributed with density

f(yd,c|xd,c) =
e−µµyd,c

yd,c!
, yd,c = 0, 1, 2, ... (3)

We specify the mean µ using the conventional exponential mean function:

E[yd,c|xd,c] = µ = exp
( 8∑
j=1

αjT jd,c +
5∑
j=1

βjRj
d,c +

5∑
j=1

γjSjd,c+

8∑
j=1

αj−1T
j
d−1,c +

5∑
j=1

βj−1R
j
d−1,c +

5∑
j=1

γj−1S
j
d−1,c + θscym + z′d,cδ

) (4)

where T jd,c is an indicator for mean daily temperature on date d in county c

lying within the bounds of bin j, Rj
d,c is for rain, Sjd,c is snow, T jd−1,c, R

j
d−1,c,

and Sjd−1,c indicate lagged weather, θscym is a state-county-year-month fixed

effect, and zd,c includes other possible covariates.

The appropriate functional form of the daily weather variables is unknown

and we adopt the semi-parametric approach of Deschênes and Greenstone

(2011). This concern is particularly relevant here, where even after

25Cameron and Trivedi (2013) note that for many common negative binomial models,

consistency requires not only correct specification of the mean and variance but also that

the data have a negative binomial distribution. A violation of the assumed Poisson

distribution will allow for valid inference only if the standard errors are appropriately

computed, which requires correction particularly when there is over- or under-dispersion.
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controlling for precipitation, there may be differential effects above and below

freezing that could be difficult to capture using a parametric specification.26

We assume that the impact of temperature is constant within 10◦F intervals,

and constant for rain or snow falls between 0.0 cm< x ≤ 0.1 cm, 0.1

cm< x ≤0.5 cm, 0.5 cm< x ≤1.5 cm, 1.5 cm< x ≤ 3.0 cm, and 3.0 cm< x.27

Because drivers who are unaccustomed to snow may face an elevated risk,

we also create an indicator variable for snow of more than 0.1 cm following

a month without any recorded snow.28

Our preferred empirical estimates include lagged variables of weather.

The motivation for including these lags is that unfavorable travel conditions

may cause individuals to delay travel. We therefore include lags of

temperature and precipitation by one day, or one week, to account for this

inter-temporal displacement.29 In our setting we include shorter lags than

26For example, even after several days without snow, melting and refreezing may create

slick roads.

27The primary restriction of bin choice lies in the NHTS household survey data, which

are more limited than the SDS data for observations on days with extreme weather

conditions. We have run specifications with more weather bins for our non-fatal accident

and fatality regressions (see Appendix Table A11) and find nearly identical results to those

estimated here.

28In robustness tests included in Appendix B, we also create a variable for infrequent

rainfall after one month of no rain. This variable will also capture the effect of oil or debris

that may be dislodged by infrequent rainfall.

29In many other fatality settings, for example, respiratory illness, there is a concern

25



are typical in this literature because it is unlikely that weather is bringing

forward accidents that were bound to happen at a later date, but weather

may defer trips increasing rates at a later date, although the time-span for

such deferment is unlikely to be longer than a week.

Consistent estimation of Equation (4) requires that we control for

unmeasured shocks that covary with weather. Both regressions include

a set of state-county-year-month fixed effects to capture all unobserved

determinants of incidents that vary at the county and monthly levels.30 These

fixed effects absorb both temporal and spatial changes related to population,

employment, and gasoline prices, as well as policy changes such as drunk

driving laws and graduated drivers licenses. Conditioning on these fixed

effects, we identify αj, βj, and γj from weather deviations within a county

in a given month. Once controlling for these factors, it seems plausible, due

to the random nature of weather, that weather is orthogonal to unobserved

that inclement weather may harm only those who were likely to die shortly thereafter and

this literature has stressed the inclusion of lags sufficiently long to capture the net effect

(Deschênes and Moretti, 2009). In the main text we report the sum of coefficients from

the contemporaneous and lagged weather. Appendix Table A6 gives the full disaggregated

set of coefficients. We also include specifications with longer lag periods and more weather

bins. In Appendix Table A14 we also examine aggregation of our data to the monthly

level.

30In Appendix Tables A10, A12, and A13 we report estimation results for models that

include state-month, county-year fixed effects, which are often used in studies with more

aggregate data, and find results that are similar in sign and magnitude.
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determinants of accidents and travel demand.

The first two moments of the Poisson distribution, E[Y ] = µ and

V [Y ] = µ show the equidispersion property that is often violated. The

presence of overdispersion, while still providing consistent estimates, will

inflate the t-ratios in a Poisson model. To correct the standard errors we

block bootstrap at the annual level.

5.1.2 VMT and Trips

To model travel demand we fit the following equation:

E[yi|xd,c] = exp
( 8∑
j=1

αjT jd,c +
5∑
j=1

βjRj
d,c +

5∑
j=1

γjSjd,c+

8∑
j=1

αj−1T
j
d−1,c +

5∑
j=1

βj−1R
j
d−1,c +

5∑
j=1

γj−1S
j
d−1,c + θscym + z′d,cδ

) (5)

We avoid log-linearizing and then estimating the equation using ordinary

least squares for several reasons. First, there are some households that have

zero daily trips or miles for which log-linearization is infeasible. Second,

as shown by Santos Silva and Tenreyro (2006), Jensen’s inequality implies

that interpreting the coefficients from such an estimate as an elasticity can

be incorrect in the presence of heteroskedasticity. Instead, we estimate

Equation (5) using Poisson regression.31 The covariates include county-year-

31In Appendix Table A15 we examine other functional forms of our trip demand model,

including the Inverse Hyperbolic Sine Function. See Appendix Table A15 for more details.
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month fixed effects, first snowfall, and controls for household characteristics.

These controls include the household size, the number of adults, vehicles, and

workers in the household, the NHTS defined life-cycle stratum and income

group, race, and the day of the week on which the household was followed.

The estimation procedure is identical to that of Equation (4) except that we

now bootstrap the standard errors at the state-by-survey-year level.

5.2 Results

5.2.1 Estimates of the Impact of Weather on Accidents

We estimate Equation (4) for three mutually exclusive and collectively

exhaustive types of accidents: accidents involving a fatality, PDO accidents,

and accidents involving an injury. Table 2 presents the estimates of

the impact of temperature, rainfall, and snowfall on these three types of

accidents. We present the sum of the current and lagged coefficients to

account for any inter-temporal offsetting that may occur for a given weather

fluctuation. In each regression, the temperature bin of 50–60◦F is omitted,

implying that each estimated coefficient is the percent change in accidents

compared to a day at 50–60◦F. Bins for rainfall of 0 cm and snowfall of 0 cm

are also omitted.

The initial set of columns, (1) through (5), display point estimates

associated with weather variables on fatalities. In column (1), our central

specification, we find that temperature has a strong and statistically
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significant effect on fatalities. Compared with a day at 50◦F, fatality risk

rises from -13.7 percent at <20◦F to 8.6 percent for a day at >80◦F. The

estimated effects for precipitation are somewhat complex. While snowfall

increases fatalities, rainfall decreases total fatalities. We suspect this is

because drivers avoid trips or drive cautiously enough to reduce overall

fatality risks on rainy days, which we will confirm with our PDO accident

and travel demand regressions.32

The following columns examine the source of these effects and test the

robustness of our fatality result. In column (2) we estimate the daily

count of fatalities, omitting fatalities where any party involved was a ULD

mode, leaving only fatalities where all parties were LDVs.33 The estimated

coefficients are small and generally insignificant, with one potentially

important exception being the >80◦F bin with a 5.2 percent increase in

32Note that the number of observations is larger than the total count of fatalities in

our dataset. This is because all days within a county-year-month are included, many of

which are zero. Whenever a county-year-month group has only zero outcomes, the group is

omitted, reducing the sample size for regressions such as that in column (3) because ULD

crashes are relatively rare. In Appendix Table A17, we present regression results for the

fatalities model that restricts the sample to the most restrictive set of observations used.

In Appendix Table A10 under the column titled FARS, we also estimate our fatality model,

Equation (4), using the FARS records of fatal accidents between 1975 and 2013, finding

results are nearly identical to those that we find with the SDS data. See Appendix A.3

for a detailed description of FARS. These data cover only fatal crashes but in all states.

33We also include heavy-duty vehicles over 4,000 lbs.
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fatalities. If this increase was due to more drivers on the road, we could

attribute this effect to exposure. But, as we will show in the travel demand

estimates, the hottest days are associated with less LDV travel, which is

consistent with heat aggravating an existing risk. The effects from rainfall

are also largely removed but snowfall effects remain positive.

Column (3) uses only the sample of fatalities where at least one party

traveled by a ULD mode. Compared with a day at 50◦F, a day below 20◦F

sees a 60 percent decrease in fatalities, while a day above 80◦F sees a 17

percent increase. These magnitudes are large because ULD accidents are

a relatively small share of fatalities. With a small base, a change of a few

fatalities will result in a large percentage change. Together columns (2) and

(3) suggest that ULD fatalities may be a minority of total fatalities but they

are the primary mechanism of the temperature-fatality relationship found in

column (1). Cognition changes from temperature may contribute to these

accidents, but are unlikely to be the primary factor as one would expect the

minimum number of fatalities to occur between 60◦F and 80◦F when comfort

is highest, but instead we find the minimum at days when temperatures are

below freezing.34

In column (4) we consider the possibility that weather may affect behavior

34In Appendix A.4 we estimate models of compositional changes to hold fixed the

number of daily accidents. We find that given an accident the likelihood that it involves

a ULD vehicle increases with temperature. We also find that fatalities are no more likely

to involve alcohol, young drivers, or males as temperatures increase.
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beyond the one-day lag of our main specification in column (1). In this

specification we include additional lags for the entire week and find that the

sum of the contemporaneous and all lagged coefficients is nearly identical to

that with only a single lag.35 Column (5) examines only the set of counties

considered large or medium metro counties by the National Center for Health

Statistics 2006 Urban-Rural Classification Scheme. The gradient of point

estimates from coldest to hottest temperature bins remains as strong as when

estimated from the entire sample, suggesting that our results are not driven

by counties with low population.36 In column (6) we examine the daily PDO

accident count as a function of weather. We find that heat does not increase

accidents over 50◦F. If the mechanism for increased fatalities were cognition

or aggression, it would be surprising that small crashes follow a different

pattern. We mostly find effects of temperatures below freezing, which could

be due to persistent ice. We also find that rainfall or snowfall increases PDO

accidents. Our largest rainfall coefficient is associated with the > 3 cm bin,

indicating that PDO accidents increase by 18.7 percent over a day without

rainfall. The effect of snowfall is more than two times larger, with a day of> 3

cm snowfall increasing PDO accidents by 43.8 percent. This suggests that

35This specification also removes the possibility our effects are individuals simply

picking the warmest day of the week for discretionary travel or ULD travel as exercise,

helping to differentiate between relative and absolute effects.

36Because the fixed effect specification removes all county-year-month groups without

any variation, the central specification will generally contain more urban counties.

31



precipitation generates more accidents but drivers, through either reduced

trips or careful driving, reduce the per accident fatality rate. In the case of

rainfall these behavioral changes lower the total fatalities, but for snowfall

the increase in accidents is so large that the total fatality rate increases,

albeit less than the accident rate. Finally, column (7) reports the effect of

weather on accidents with at least one injury but no fatalities. There is a

slight positive association between temperature and accidents with injuries.

The precipitation effects display a similar pattern as that for accidents but of

a smaller magnitude. For example a day with snowfall of > 3 cm is associated

with an increase in injuries of only 26.2 percent. Broadly these results are a

transition between PDO accidents and fatalities.

It seems reasonable to suspect that local populations may adapt to

common weather conditions and that warm locations may see a smaller effect

of hot weather than cold locations. Furthermore it may be possible that

technology and other safety programs may hold some promise in reducing the

relationship between temperature and fatalities. We explore these hypotheses

in Table 3. In columns (1) and (2) we run our regressions on the coldest and

hottest counties in our sample. While there are differences in the point

estimates between these columns the standard errors are generally too large

to distinguish between the two. Considering the point estimates we do not

see clear evidence of adaptation. Breaking the sample into an early and late

time period also does not show overwhelming evidence of innovation that

protects individuals from the effects of weather. These estimates, presented
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in columns (3) and (4), are somewhat more interesting in that they suggest

he temperature-fatality relationship has increased over time.

Considering the channel of ULD crashes may help to explain these

somewhat puzzling test for adaptation. If the decision to use a ULD mode

primarily determines the temperature-fatality relationship, the role of climate

in determining the propensity to walk or ride a motorcycle on a 70◦F day

may be limited and mostly determined by daily weather rather than climate.

The increasing relationship between temperature and fatalities over time

would also seem puzzling, at first, considering the safety improvements

to automobiles in recent years and declining fatality rates overall. But

ULD crashes have not followed this trend providing an explanation for this

result. Motorcycle deaths, in particular, have not decreased over time but

rather increased from 2,056 in 1997 to 5,050 ten years later in 2007. If

a growing share of the year is snow free, individuals may make vehicle or

housing choices that facilitate more frequent walking, biking, or commuting

by motorcycle. Adaptation may not only be an investment in capital that

protects individuals from weather but also in capital that exposes them to

weather.

5.2.2 Estimates of the Impact of Weather on Travel Demand

The estimated effects of weather on daily fatalities are suggestive of

an exposure mechanism for ULD accidents but the mechanism for the

remaining LDV effects is unclear. In this section we further explore these
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mechanisms using the NHTS logs of daily household travel. Table 4 gives

the point estimates and standard errors for a regression of weather on several

aspects of travel demand. Our coefficient estimates are again the sum of

contemporaneous and lagged effects.37 Given the limited amount of data,

statistical precision is lower than in the prior section, but some broad patterns

are found in these results.

The estimates in column (1) indicate that mean daily temperatures

below 20◦F see 7.5 percent fewer LDV miles per household. Warmer days

do not show evidence of a statistically significant change in demand but

the bin above 80◦F does have a negative point estimate. This provides

some evidence that the increase in LDV fatalities above 80◦F cannot be

attributed to additional driving and exposure as a mechanism. Similarly the

point estimates for precipitation are marginally significant but consistently

negative. For LDVs it appears possible that precipitation and possibly

hot weather aggravate an existing risk and avoided trips are an additional

defensive expenditure.

Because our travel demand estimates are based on a self-reported survey,

it is possible households record trip count with more precision than miles.

While miles are a complete measure of adjustment, distance can be difficult

to judge and is often rounded. In column (2), we examine the total trip as a

function of weather. We find similar patterns as the total miles regression but

the bin above 80◦F finds a larger effect and greater precision, again showing

37See Appendix Table A9 for the disaggregated results.
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avoided travel.38 This provides some evidence that LDV fatalities on the

hottest days may be due to aggravated risk, leaving open the possibly of

cognition as a mechanism.

In columns (3) and (4) we present results with only ULD travel by

households. In column (3) we document a positive correlation between

temperature and ULD miles below 60◦F. Above this temperature the point

estimates continue to grow but are not precisely estimated. Comparing these

estimates with those in column (1), we can see that the changes in demand

are an order of magnitude larger than for LDV travel. On days below 20◦F

demand decreases by 78 percent. As might be expected these exposed modes

of transit are also unpopular on days with precipitation. The ULD trip

count, estimated in column (4), shows that cold temperatures and rainfall

also decrease the trip demand. The general pattern confirms our earlier

fatality results that ULD demand is closely linked to temperature.

The final column, (5), examines only trips taken with public transit

options such as bus and subway. Our strongest results come from cold days

when users reduce trip demand. Although not measured with precision, the

38In the appendix, we combine distance with the duration of the trip to generate speed.

Speed can be a function of driver choice but also of congestion, complicating interpretation

of the speed estimates. But one might be concerned that deadly crashes were generated by

higher intensity crashes. In Appendix Table A16 we do not find any evidence that fatalities

are due to speed effects. If anything, drivers reduce speed on days with temperatures over

80◦F and when there is snowfall, again suggesting defensive behavior.
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point estimates are negative for very hot days when waiting for buses and

subways is also unpleasant.

Several general observations can be made from these estimates. In Table 4

we find no evidence that ULD travel is reduced as temperature and fatality

risk increase. This suggests an exposure mechanism. For LDV travel a

different picture emerges where elevated fatality risk on days above 80◦F (or

accident risks on cold, rainy, or snowy days) could be reducing demand and

possibly a defensive action against aggravated risk due to weather.39

6 Simulation of Future Outcomes

The estimates above present a mixed picture of the effect of climate change

on traffic accidents. While our estimates suggest warmer temperatures will

result in more fatalities, a transition from snow to rain will reduce fatalities.

It is also possible that changes in travel demand will offset or exacerbate

these costs.

To calculate the net welfare effect we calculate the change in an outcome,

∆y, for example fatalities, by summing the daily changes,
∑

d

∑
c ∆yd,c,

39These results are robust to alternative functional form assumptions. We estimate an

alternative model that can handle zero values, the Inverse Hyperbolic Sine, in Appendix

Table A15 and find that our results are broadly consistent with those reported using the

Poisson model.
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across counties indexed by c and days indexed by d where:

∆yd,c =

[
8∑
j=1

(
α̂j + α̂j−1

)
·
(
T̂ jd,c − T

j
d,c

)]
yd,c+[

5∑
j=1

(β̂j + β̂j−1) ·
(
R̂j
d,c −R

j
d,c

)]
yd,c +

[
5∑
j=1

(γ̂j + γ̂j−1) ·
(
Ŝjd,c − S

j
d,c

)]
yd,c.

(6)

The α̂j, β̂j, γ̂j and α̂j−1, β̂
j
−1, γ̂

j
−1 terms denote our estimated contemporaneous

and lagged coefficients from Equation (4), respectively, which are summed to

give the net effect of a day with particular weather conditions. The T̂ jd,c, R̂
j
d,c

and Ŝjd,c represent indicators for future weather on date d in county c within

bin j. Equation (6) generates the percent change in fatalities by multiplying

the number of bin changes by the marginal effect of a bin change. This

percent change is then multiplied by the baseline daily level of fatalities in

the county yd,c.
40 Evaluating Equation (6) requires a baseline and a predicted

future weather. It is natural to use observed weather as the baseline and

the output from climate forecasting models as the future. We base our

40Because our SDS data have fatality rates, yd,c, for only 20 states, we use FARS data

averaged from 2000 to 2010 to generate average daily fatality rates at the county level. For

simulations of LDV and ULD fatalities, injuries, and PDO accidents, we project the county

baseline using a Poisson model by regressing the outcome variable (e.g., LDV fatalities)

on the fatality rate and population by county for the counties in the SDS data and use

the estimated coefficients to impute missing counties. For our trip demand simulations we

use the observed average per household in each county in our NHTS sample, and where

no NHTS data is given in a county, we apply the national average.
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weather predictions on the CCSM4 RCP6.0 Scenario, which includes daily

(minimum, maximum, and average) temperature and precipitation from 2006

to 2099. Because climate models predict weather over a grid, it is a well

known problem that the weather predicted in the baseline years from 2006

to 2009 will not match observed weather outcomes particularly in areas with

complex terrain (Wilcke et al., 2013). If these baseline discrepancies are

not adjusted, the simulation will generate changes that are the result of this

baseline discrepancy as opposed to changes in weather.

Prior correction methods typically adjust either the current observed

weather or prediction data by adjusting mean outcomes. These methods can

only correct biases in the mean and not other moments of the distribution41

and often imply unreasonable corrections to daily precipitation variables,

which are truncated at zero.42 To correct these biases with more intuitive

outcomes, we draw on quantile-based methods used by atmospheric and

41Changes in weather variability are of particular interest for projecting crop yield

changes (Schlenker and Roberts, 2009).

42Although additive methods are generally not used for precipitation, if ξτ,c > 0 or

ψτ,c > 0, the corrected rainfall prediction will shift all days with zero precipitation to

a positive value. Prior studies have usually corrected precipitation with a multiplicative

method, which is undefined if
∑
d∈τ

xd,c = 0, forcing correction at a highly level temporal

or spatial level to avoid, for example, warm dry regions without snowfall. Multiplicative

correction methods also have no ability to generate or remove trace precipitation days and

can only scale up or down already existing precipitation.
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climate scientists (Wilcke et al., 2013).43 Once T̂ jd,c, R̂
j
d,c and Ŝjd,c are corrected

they are applied to equation (6).

6.1 Estimating Welfare Effects of Climate Change

We make assumptions regarding the terms in Equation (2) to estimate the

welfare effects of climate change. The first is that we assume that the second

term in Equation (2),
m∗∫
0

∂v
∂W

dm, is equal to zero. We make this assumption

given that we are only able to measure how the equilibrium number of miles

and not the full MWTP across the demand curve responds weather. The

value of this approach is that our estimate does not depend on assumptions

of how portions of the demand curve change that we cannot observe (e.g., a

parallel shift versus a pivot). This assumption may understate the total

effects of climate change positively or negatively. In our setting, where

demand for miles increases, we think the likely reason is that the demand

curve is shifting out resulting in additional benefits making our offsetting

results conservative.44

We begin by calculating the change in total fatalities compared to the

baseline. This represents the conventional approach capturing terms third

43The major advantages of these methods are that they correct all moments of the

distribution, not just the mean, and that adjust both the frequency and amount of

precipitation. See Appendix A.5 for a detailed discussion of the correction method used.

44To generate more miles but lower net welfare would require an increase in the value

of marginal trips with a decrease in the value of inframarginal trips.

39



and fourth term in Equation (2). To capture the first term we next simulate

the milage change. We assume that these miles generate the observed

fatality-per-mile rates implied by our summary statistics. The net of these

terms will result in the fourth term which we price using the value of a

statistical life.

We also calculate the change in the price per mile of trips due to climate

change by dividing the percent change in total accidents by the percent

change in total miles traveled. This represents the first component of the

fourth term, dp
dW

, which (assuming the second term is zero) ultimately controls

the sign of total welfare and determines if the sector sees net benefits or losses.

Our empirical exercise focuses on accident costs stemming from fatalities

since these types of accidents comprise a large majority of total accident costs.

We disaggregate changes for each type of travel mode, LDV and ULD, since

weather changes may impact accidents and traveling decisions differently.

In the appendix, we also present results for non-fatal accidents, which have

costs and benefits that are much smaller in magnitude and we show that our

broad conclusions remain unchanged when incorporating these accidents.

6.2 Results

Table 5 summarizes the fatality results of our simulation and welfare

calculations using our quantile mapping method.45 Each simulation in Panel

45In Appendix Table A18 we present welfare estimates of accidents and injuries, which

are substantially smaller than our fatality results. Appendix Figure A.1 maps the projected
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A details the changes in fatalities, and discounted costs, in 2090 and then for

the entire period from 2000 through 2099 from LDV and ULD crashes. The

brackets give the 95 percent confidence intervals.46 Column (1) reports the

effect of weather from LDV crashes using our estimates from Table 2 column

(1). The net change in fatalities is an increase of 82 in 2090 and 4,142 for

the period from 2000-2099. Applying the Department of Transportation’s

(DOT) VSL at $9.1 million and discounting at a 3 percent rate, this has

a present value of $9.9 billion.47 We note that none of these changes are,

however, statistically distinguishable from zero.

Column (2) of Panel A examines changes in ULD fatalities, which are

substantially larger and are statistically distinguishable from zero. By 2090

our estimates indicate in increase in fatalities by 299. This represents a 3.26

percent increase in ULD fatalities annually. This results in substantial costs

over the next century. From 2000 through 2099 we expect 13,617 fatalities

fatality, injury, and accident effects by county.

46These confidence intervals incorporate the uncertainty of our point estimates but not

the uncertainty across various climate change models. These are generated by drawing

from a normal distribution with the mean and standard deviation of coefficient estimates

given in Table 2. These draws are then applied to the predicted weather effects in each

decade. From these values the mean and 95 percent confidence interval are calculated.

When summing across decades, the mean and 95 percent confidence interval are assigned

to the midpoint of the decade and linear interpolation is used between those years.

47We do not adjust the VSL amount for future changes in income. We use a 3 percent

discount rate to be consistent with DOT assumed rates (Blincoe et al., 2014).
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with a present discounted cost of $27.7 billion. While a few hundred fatalities

annually is small compared to the roughly 30,000 fatal car crashes a year, our

ultimate goal is to evaluate the costs of climate change through the channel

of traffic fatalities as opposed to a goal of optimizing climate change to reduce

traffic fatalities. Therefore the welfare costs of this channel should be added

to, or compared with, those of other channels through which climate change

may affect future generations as opposed to costs of traffic fatalities. The

figure of $27.7 billion suggests substantial costs particularly for ULD modes,

on the order of changes found in other areas such as agriculture (Deschênes

and Greenstone, 2007) and crime (Ranson, 2014), but a complete picture

requires estimating the changes to demand which will net out these costs if

demand is shown to increase.

Panel B applies the estimates of the weather-travel demand relationship

estimated in Table 4 to future weather outcomes.48 While demand for LDV

trips increases by 7 billion miles,49 this increase is on a percentage basis

small at 0.31% and is not statistically distinguishable from zero.50 Column

48To calculate the change in demand from our estimates, we multiply the estimated

percent change in demand times the number of miles taken daily in the county. To generate

the daily number of miles, we use the average number of miles across households in the

county in the NHTS data, which is multiplied by the number of households in the county.

Miles are priced based on the average fatalities per LDV or ULD mile times the VSL.

49For comparison, drivers in the US currently drive roughly 3 billion miles annually.

50These benefits assumed to be $0.09 per mile which is the VSL multiplied by the

per-mile fatality risk as given in Table 1 Panel A.
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(2) presents estimates of the change in ULD miles travel. Although the

predicted change in miles is smaller in magnitude, 1 billion miles in 2090,

this change is statistically significant and substantially larger in percentage

terms at 4.03%.51 One of the key takeaways from comparing Panel A with

Panel B is that fatalities increase more on a percentage basis than miles for

LDVs implying net costs, while fatalities increase less than miles for ULDs

implying net benefits.

The values in Panel C evaluate total welfare changes for the LDV and

ULD modes. For LDV vehicles we summarize the effects of Panels A and B

by calculating the change to cost per mile. For LDV modes we find a slight

increase but for ULD modes net cost-per-mile is actually reduced even though

this category saw larger increases in fatalities. Another way of interpreting

this finding is to omit the conversion of fatalities to dollars. This result

suggests that the increase in fatalities for ULD modes can be explained by

an increased demand for travel in these modes. Because the individual LDV

components are not statistically significant we cannot determine if welfare is

affected, but taking the point estimates at face value, we note that welfare

costs of LDV fatalities are reduced from $9.9 billion to $3.9 billion, a 60%

51These costs or benefits are valued at $2.65 per mile. We use the fatality risk per mile

as implied by the SDS and NHTS data although it is likely this cost will change over time.

We discuss the possible changes over the next century to this risk-per-mile measure for

ULD and LDV trips in the next section.
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reduction, when the demand shift is accounted for.52 Taken together, our

results suggest that excluding exposure benefits from cost-benefit analysis

can dramatically overestimate the expected net costs from climate change.

6.3 Discussion

There are several relevant caveats to our welfare analysis and predictions of

future fatalities. The first is that we cannot evaluate the change in MWTP for

non-marginal trips, the second term in Equation (2). Here we have assumed

a flat demand curve and that these changes do not generate welfare. Because

demand for miles increases for both of our sectors, it seems likely that these

effects are positive, but they could, in principle, be negative.

Our simulation also rests on the assumption that drivers rationally

evaluate the fatality risk of driving, walking, bicycling, or using a motorcycle.

Systematic over- or undervaluation of risk is plausible and climate change

may aggravate such a market failure but without substantial evidence of such

a phenomenon, rational expectations is, we believe, the safest assumption.

Furthermore addressing this irrationality through a policy aimed at reducing

52It is important to note that offsetting can be sensitive to the climate scenario used

because there can be substantial variation in the timing and location of weather changes.

These additional trips are evaluated by their price, which only incorporates the risk of

a fatality. We do not incorporate accident or injury costs because FARS does not track

these and the SDS data only track crashes involving LDVs. We also evaluate LDV trips

only using fatality costs, excluding other costs such as time and gasoline for consistency.
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greenhouse gas emissions would rest on a second-best argument that agencies

were unable to address this market failure directly.

We also assume that all aspects of driving besides the weather-travel and

weather-accidents relationships that we estimate are held constant. Rather

than thinking of these simulations as a literal prediction, the value of this

exercise is to compare this channel with other potential channels through

which climate change may influence costs and which mechanisms or policies

may influence these costs. For example, our simulation does not account

for future changes in the availability of driver-assistance technology (e.g.,

automatic lane changing) or fully autonomous vehicles. But this possibility

does not weaken our conclusion that accounting for behavioral responses is

important for accurately forecasting net costs of climate change. Driverless

cars could dramatically reduce accident frequency, reducing the slope of

the temperature-mortality relationship. But by reducing the marginal

accident cost per mile, total miles would rebound, which may not reduce

the relationship between trip demand and weather. As long as trip demand

responds to weather and fatalities per mile are not zero, failure to account

for voluntary exposure benefits would overestimate costs.

Fourth, we note that even if all additional deaths are due to voluntary

exposure, this is not an argument against public policy to reduce this number.

Increased fatalities may change the cost-benefit analysis of a particular policy.

If warmer weather encourages more walking, biking, and motorcycling, a

location may adapt by shifting public policy to address the dangers associated
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with these modes of travel.

A final limitation of our welfare calculations is that they do not

incorporate private or public adaptation to warmer, rainier weather. Leaving

adaptation out of our welfare calculations implies that our estimates overstate

the long-run impacts of climate change. They also do not account for

migration away from affected areas, as a form of private adaptation. But

it is important to note that if the fatalities we estimate are due to voluntary

exposure, unlike other forms of adaptation, migration should not be expected

as these fatalities would not be associated with lower total utility. Such

a dynamic may explain why, despite the documented negative outcomes

associated with heat, the predominant migration pattern within the United

States in recent decades has been towards warmer climates. Because our

measure of voluntary exposure does not offset all costs, some of our estimates

may be due to aggravated risk, which would encourage migration but previous

estimates of migration in response to climate change suggest that it is likely

to be modest (Albouy et al., 2016).

7 Conclusion

This paper estimates the impact of weather on traffic fatalities, injuries, and

PDO accidents as well as total trip demand. We apply these estimates to the

CCSM4 RCP6.0 climate change scenario corrected using quantile-mapping.

We find that the net annual increase in fatalities will be 381 fatalities by
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2090. While some crashes only involving light-duty vehicles on hot days may

be due to psychological effects, most fatalities are due to increased demand

for travel by pedestrians, bicycles, and motorcycles suggesting a voluntary

exposure mechanism. These fatalities carry a total net present cost of $37.6

billion by the end of the century. Increased benefits from travel, however,

offset more than 60 percent of LDV fatality costs and all of the ULD fatality

costs.

One broader implication of this research is that voluntary exposure is an

important mechanism for understanding the welfare implications of climate

change. Our estimated effects appear to be the result of individuals being

drawn outdoors and using forms of transportation that will not protect them

in a crash. It is possible that individuals spending time outdoors will also be

exposed to street crime or air pollution. In the agriculture sector, farmers

may choose riskier but higher-profit crops, such as citrus, in warmer areas.

Voluntary decisions may also be important for broader economic measures

such as GDP. Warmer climate may allow for outdoor leisure activities that

may or may not be captured by GDP or may increase the opportunity cost of

working. In other domains, such as health effects of temperature for infants

and elderly, a voluntary exposure mechanism seems less plausible.

Finally, it is important to note that the exposure mechanism will

vary across countries, particularly for transportation. Compared with the

United States, developing nations, and even some middle income countries,

have larger fatality rates per capita, largely due to vehicles colliding with
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pedestrians (Kopitis and Cropper, 2005). Other countries like Sweden with

extraordinarily low fatality rates have pursued a variety of urban design

and legislative changes to reduce fatalities with policies such as replacing

intersections with roundabouts to slow vehicles where they are likely to

encounter pedestrians.53 Relatively simple changes like these may prove to

be effective, although unglamorous, adaption strategies to climate change.

53The “Vision Zero” policy was adopted by Sweden in 1997 to reduce fatalities to zero

by 2020. Similar policy initiatives have now been adopted by other nations and cities

including several in the United States.
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Table 1: Summary Statistics, Accidents and Travel Demand Data

Panel A. State Accident Data, 1991-2010

Accidents
per 100,000

LDV
Fatalities

per 100,000

ULD
Fatalities

per 100,000

Temperature (◦F)

Quantile

Rainfall (cm)

Quantile

Snowfall (cm)

Quantile
5th 50th 95th 75th 95th 75th 95th

Census Regiona (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Northeast 3.5 0.029 0.011 20.2 51.0 75.3 0.35 1.34 0.01 1.82
Midwest 8.5 0.056 0.007 17.2 53.0 79.0 0.22 1.25 0.00 0.94
South 8.8 0.064 0.014 37.2 65.9 82.7 0.33 1.69 0.00 0.00
West 5.7 0.072 0.014 23.6 53.3 76.4 0.09 0.75 0.00 0.84
All 20 States 7.6 0.058 0.010 21.3 56.4 80.4 0.23 1.30 0.00 0.68
Panel B. NHTS Daily Travel Data, 1990-1991, 1995-1996, 2001-2002, and 2008-2009

Daily HH

Trips

Daily LDV

Miles

Daily ULD

Miles

Temperature (◦F)

Quantile

Rainfall (cm)

Quantile

Snowfall (cm)

Quantile
Census Region 5th 50th 95th 75th 95th 75th 95th
Northeast 6.4 52.5 0.8 19.8 50.4 74.9 0.32 1.30 0.00 2.23
Midwest 6.8 56.7 0.7 14.6 47.6 76.2 0.24 1.25 0.00 1.30
South 6.1 55.7 0.7 34.4 65.2 83.4 0.23 1.43 0.00 0.00
West 6.4 49.7 1.1 40.2 63.1 79.6 0.03 0.79 0.00 0.05
All States 6.4 54.2 0.8 24.1 59.2 81.5 0.22 1.27 0.00 0.50

Panel C. Observed Weather Station Data, 2000-2009
Temperature (◦F)

Quantile

Rainfall (cm)

Quantile

Snowfall (cm)

Quantile
Census Region 5th 50th 95th 75th 95th 75th 95th

Northeast 21.6 54.8 79.7 0.33 1.48 0.00 1.24
Midwest 13.9 51.6 77.4 0.23 1.26 0.00 1.05
South 33.8 63.4 83.0 0.28 1.52 0.00 0.00
West 19.6 50.7 76.0 0.10 0.71 0.00 1.13
All Regions 21.8 57.2 81.1 0.24 1.33 0.00 0.51
Panel D. Baseline Predicted CCSM4, 2006-2009

Temperature (◦F)

Quantile

Rainfall (cm)

Quantile

Snowfall (cm)

Quantile
Census Region 5th 50th 95th 75th 95th 75th 95th

Northeast 21.1 57.3 80.0 0.34 1.33 0.00 0.57
Midwest 13.8 55.3 84.3 0.23 1.08 0.00 0.66
South 32.2 65.3 83.9 0.38 1.32 0.00 0.01
West 17.3 49.5 77.9 0.17 0.87 0.01 2.01
All Regions 21.9 59.6 83.1 0.30 1.19 0.00 0.41

Panel E. Predicted Future CCSM4, 2090-2099
Temperature (◦F)

Quantile

Rainfall (cm)

Quantile

Snowfall (cm)

Quantile
Census Region 5th 50th 95th 75th 95th 75th 95th
Northeast 25.9 61.2 84.2 0.37 1.46 0.00 0.28
Midwest 20.7 59.2 88.9 0.23 1.10 0.00 0.41
South 35.9 69.3 88.1 0.40 1.44 0.00 0.00
West 24.4 53.3 82.1 0.23 1.08 0.00 1.49
All Regions 27.2 63.6 87.5 0.31 1.30 0.00 0.19

Notes: Panel A details the state accident data for 20 states grouped by census region. Panel A statistics are based on
6,698,935 county-by-day observations of accidents, fatalities, and weather. Panel B describes the National Household
Transportation Survey data of 283,857 households and their driving behavior for a 24 hour period. Panels C, D,
and E describes the county-by-date weather observations used in the simulation from the National Climatic Data
Center’s Global Historical Climatology Network-daily and the CCSM4 RCP6.0 scenario predicting daily weather.
a See Appendix Table A2 for included states and further details.
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Table 2: Poisson Regression of Accidents on Weather Variables

Fatalities
PDO

Accidents
Injuries

LDV
Crashesa

ULD
Crashesb

Week of
Lagsc

Urban
Countiesd

(1) (2) (3) (4) (5) (6) (7)
Mean Temp.
<20◦F -0.137*** -0.014 -0.600*** -0.093 -0.116* 0.098*** 0.002

(0.032) (0.035) (0.057) (0.053) (0.056) (0.021) (0.020)
20-30◦F -0.107*** 0.017 -0.579*** -0.102*** -0.126*** 0.028 -0.040**

(0.027) (0.031) (0.043) (0.025) (0.036) (0.016) (0.015)
30-40◦F -0.085*** 0.008 -0.413*** -0.081*** -0.076* -0.028*** -0.067***

(0.020) (0.020) (0.044) (0.019) (0.034) (0.007) (0.007)
40-50◦F -0.066*** -0.022 -0.203*** -0.061*** -0.035* -0.024*** -0.045***

(0.013) (0.015) (0.022) (0.013) (0.017) (0.004) (0.004)
60-70◦F 0.051*** 0.015 0.136*** 0.050*** 0.056*** -0.004 0.021***

(0.011) (0.012) (0.012) (0.011) (0.013) (0.004) (0.003)
70-80◦F 0.065*** 0.018 0.181*** 0.061*** 0.068*** -0.010 0.023***

(0.014) (0.013) (0.019) (0.014) (0.018) (0.006) (0.004)
>80 ◦F 0.086*** 0.052* 0.170*** 0.081*** 0.081** -0.010 0.016*

(0.017) (0.021) (0.028) (0.018) (0.030) (0.008) (0.007)
Rainfall

0-0.1 cm -0.026*** 0.001 -0.103*** -0.024** -0.034* 0.022*** 0.014***
(0.008) (0.009) (0.019) (0.008) (0.014) (0.003) (0.004)

0.1-0.5 cm -0.042*** 0.008 -0.184*** -0.047*** -0.045** 0.069*** 0.057***
(0.011) (0.011) (0.015) (0.012) (0.015) (0.004) (0.005)

0.5-1.5 cm -0.053*** 0.020 -0.249*** -0.055*** -0.036* 0.108*** 0.089***
(0.014) (0.013) (0.025) (0.014) (0.017) (0.006) (0.007)

1.5-3 cm -0.086*** -0.015 -0.290*** -0.117*** -0.018 0.152*** 0.128***
(0.017) (0.023) (0.043) (0.020) (0.024) (0.010) (0.010)

>3 cm -0.033 0.065 -0.302*** -0.036 -0.004 0.187*** 0.148***
(0.029) (0.034) (0.060) (0.032) (0.051) (0.014) (0.015)

Snowfall
0-0.1 cm 0.026 0.041* -0.024 0.031* 0.005 0.023*** 0.006

(0.015) (0.019) (0.041) (0.016) (0.029) (0.006) (0.007)
0.1-0.5 cm 0.057** 0.073** -0.027 0.053** 0.002 0.100*** 0.078***

(0.019) (0.024) (0.030) (0.020) (0.031) (0.009) (0.006)
0.5-1.5 cm 0.124*** 0.133*** 0.064 0.139*** 0.078** 0.225*** 0.183***

(0.026) (0.029) (0.053) (0.027) (0.027) (0.009) (0.009)
1.5-3 cm 0.128*** 0.122*** 0.092 0.138*** 0.064 0.354*** 0.286***

(0.028) (0.033) (0.077) (0.039) (0.043) (0.011) (0.009)
>3 cm 0.036 0.025 0.012 -0.008 -0.090 0.438*** 0.262***

(0.043) (0.048) (0.056) (0.043) (0.054) (0.014) (0.022)
Num. Obs. 3,174,278 2,846,607 1,132,759 3,174,278 781,078 6,755,606 5,151,670

Notes: The estimates are from a Poisson regression of the daily count of fatalities, property-damage-only
(PDO) accidents, or injuries by county on weather, county-year-month fixed effects, and an indicator
for first snowfall after 1 month without snow. Standard errors, in parentheses, are block bootstrapped
by year. Reported coefficients and standard errors are the linear combination of the current and lagged
estimates. Disaggregate results presented in Appendix Table A6.
a Includes only fatality counts where all participant were light-duty vehicles (also includes heavy duty
vehicles).
b Includes only fatality counts where one participant was an ultra-light duty mode.
c Includes controls for 6 additional days of lags for each weather bin. Coefficients and standard errors
include the sum of all current and lagged weather controls.
d Includes only counties classified as large or medium urban and suburban counties as classified by the
National Center for Health Statistics 2006 Urban-Rural Classification Scheme.
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Table 3: Poisson Regression of Fatalities–Adaptation

Regional Sorting Time Period Changes
Coldest
Quartile

Hottest
Quartile

1990-1999 2000-2010

(1) (2) (3) (4)

Mean Temp.
<20◦F -0.196*** 0.210 -0.095 -0.158***

(0.050) (0.219) (0.050) (0.033)
20-30◦F -0.138** -0.114 -0.068 -0.130***

(0.056) (0.089) (0.054) (0.023)
30-40◦F -0.110** -0.061* -0.030 -0.109***

(0.036) (0.027) (0.031) (0.019)
40-50◦F -0.063 -0.044** -0.063** -0.066***

(0.040) (0.015) (0.024) (0.016)
60-70◦F 0.147*** 0.058*** 0.051** 0.051***

(0.024) (0.017) (0.018) (0.013)
70-80◦F 0.159*** 0.087*** 0.062** 0.068***

(0.032) (0.021) (0.021) (0.018)
>80◦F 0.151 0.123*** 0.079** 0.089***

(0.082) (0.022) (0.028) (0.021)
Rainfall

0-0.1 cm -0.051** -0.037* 0.004 -0.040***
(0.019) (0.016) (0.013) (0.006)

0.1-0.5 cm -0.090*** -0.020 0.000 -0.061***
(0.026) (0.013) (0.014) (0.010)

0.5-1.5 cm -0.087* -0.011 -0.011 -0.073***
(0.036) (0.014) (0.023) (0.013)

1.5-3 cm -0.299*** -0.027 -0.048 -0.102***
(0.062) (0.024) (0.033) (0.022)

>3 cm -0.167 0.014 -0.010 -0.049
(0.221) (0.048) (0.048) (0.034)

Snowfall
0-0.1 cm 0.081** 0.050 0.021 0.034**

(0.028) (0.079) (0.031) (0.013)
0.1-0.5 cm 0.124*** 0.018 0.041 0.067***

(0.032) (0.058) (0.032) (0.020)
0.5-1.5 cm 0.199*** 0.082 0.057* 0.159***

(0.053) (0.072) (0.028) (0.030)
1.5-3 cm 0.349*** -0.160 0.063 0.162***

(0.064) (0.123) (0.050) (0.023)
>3 cm 0.297*** -0.006 0.048 0.038

(0.057) (0.158) (0.074) (0.047)

Num. Obs. 578,710 1,050,571 933,759 2,216,506

Notes: The estimates are from a Poisson regression of the daily count of fatalities by
county on weather, county-year-month fixed effects, and an indicator for first snowfall
after 1 month without snow. Standard errors, in parentheses, are block bootstrapped
by year. Reported coefficients and standard errors are the linear combination of the
current and lagged estimates.
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Table 4: Poisson Regression of Travel Demand

Light-Duty Vehicles Ultra-Light Duty
Public
Transit

Household
Miles

Trip Count
Household

Miles
Trip Count Trip Count

(1) (2) (3) (4) (5)

Mean Temp.
<20◦F -0.075* -0.043 -0.780*** -0.329*** -0.291*

(0.031) (0.023) (0.145) (0.059) (0.128)
20-30◦F -0.057* -0.036* -0.521*** -0.172*** -0.200

(0.024) (0.015) (0.108) (0.041) (0.104)
30-40◦F -0.010 -0.021* -0.363*** -0.124*** -0.054

(0.015) (0.010) (0.086) (0.031) (0.055)
40-50◦F -0.022 0.001 -0.156* -0.045* -0.080

(0.012) (0.007) (0.076) (0.021) (0.046)
60-70◦F 0.005 -0.007 0.059 0.022 0.044

(0.010) (0.008) (0.050) (0.019) (0.057)
70-80◦F 0.003 -0.007 0.097 0.011 0.044

(0.016) (0.008) (0.087) (0.029) (0.058)
>80◦F -0.010 -0.033* 0.129 0.005 -0.149

(0.030) (0.015) (0.092) (0.040) (0.100)
Rainfall

0-0.1 cm -0.009 -0.013* -0.162*** -0.020 0.016
(0.010) (0.006) (0.046) (0.017) (0.050)

0.1-0.5 cm -0.023* -0.006 -0.264*** -0.079*** 0.008
(0.011) (0.008) (0.048) (0.021) (0.040)

0.5-1.5 cm -0.012 -0.004 -0.266*** -0.107*** 0.034
(0.014) (0.007) (0.067) (0.017) (0.059)

1.5-3 cm 0.002 -0.032** -0.602*** -0.116** 0.044
(0.019) (0.011) (0.111) (0.037) (0.062)

>3 cm -0.018 -0.041* -0.349 -0.167** 0.190
(0.038) (0.021) (0.274) (0.065) (0.143)

Snowfall
0-0.1 cm 0.032 -0.011 0.160* 0.050 0.068

(0.025) (0.012) (0.079) (0.042) (0.056)
0.1-0.5 cm -0.008 -0.013 0.055 -0.090* -0.041

(0.024) (0.014) (0.095) (0.036) (0.080)
0.5-1.5 cm -0.004 -0.007 -0.185 -0.134** -0.182*

(0.030) (0.018) (0.102) (0.044) (0.093)
1.5-3 cm -0.085* -0.087*** -0.055 -0.088 0.079

(0.042) (0.025) (0.178) (0.075) (0.127)
>3 cm -0.166** -0.170*** 0.016 -0.057 -0.023

(0.060) (0.035) (0.111) (0.071) (0.164)

Num. Obs. 261,718 261,718 228,291 228,291 178,278

Notes: The estimates are from a Poisson regression of the daily count of trips and miles per trip for
Light-Duty Vehicles, Ultra-LightDuty Modes, and Public Transit by household on weather, county-
year-month fixed effects, an indicator for first snowfall after 1 month without snow and household
controls. Household controls include count of vehicles in household, household size, number of workers
in household, number of adults in household, NHTS life cycle stratum, race, NHTS defined income
group, and day of week. Standard errors, in parentheses, are block bootstrapped by year.
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Table 5: Estimates of the Change in Fatalities and the Present Discount
Value Costs of Climate Change

Panel A. Fatality Changesa

LDV ULD
(1) (2)

Net Change in 2090 82 299
[-4, 161] [263, 335]
0.33% 3.26%

Sum of Net Changes 2000-2099 4,142 13,617
[-308, 8,272] [11,760, 15,500]

Sum of Costs 2000-2099c $9.9 $27.7
($2015 Billions) [-$0.8, $20.0] [$23.1, $32.2]

Panel B. Mileage Changesb

Net Change in 2090 7.10 1.00
(Billions of Miles) [-2.89, 16.70] [0.65, 1.36]

0.31% 4.03%

Sum of Net Changes 2000-2099 292.62 47.3
(Billions of Miles) [-227.93, 793.74] [28.5, 66.9]

Panel C. Welfare (2000-2099)
Per Mile Cost Change $0.00046 -$0.00215

Net Costsd,e $3.9 -$1.4
($2015 Billions)

Notes: Net Present Cost estimates are reported in 2015 dollars. The net change estimates are
the sum of county-level changes in weather on the listed outcome. All future weather simulations
use quantile mapping to adjust current weather to the changes predicted by the CCSM4 RCP6.0
scenario. Values given in brackets indicate the 95 percent confidence interval. See text for further
details of calculations and Appendix A18 for accident and injury costs. All costs assume a discount
rate of 3 percent.
a For counties with missing daily average LDV, ULD, injuries, and accidents, rather than applying
a national average, we impute using a Poisson regression of the daily count of incidents for states
with SDS data on county population and fatalities.
b For counties without NHTS data we are missing LDV trips and ULD trips and we apply the
national average.
c Assumes the value of a statistical life is $9.1 million (Blincoe et al., 2014).
d Uses the total cost of nationwide LDV fatalities divided by the annual number of LDV miles. This
cost is on average $.09 per mile.
e Uses the total cost of nationwide ULD fatalities divided by the number of ULD miles per household
per day (0.59), as taken from the NHTS data, multiplied by 365 days and the number of households
in the census. This cost is on average $2.65 per mile.
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