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LIST OF ABBREVIATIONS
Crash types
ANG Right angle oD Opposite direction (all severity
. levels)
ANIMAL Animal related
) ) PED Pedestrian—vehicle
BIKE Bicycle—vehicle
. . RE Rear end
FO Fixed object
RO Overturn or roll over
HO Head-on
. . ROR Single-vehicle run-off-road
HO+SOD Head-on plus sideswipe
opposite direction SD Same direction (all severity
. . . levels)
ID Intersecting direction (all
severity levels) SOD Sideswipe opposite direction
LEFT Left turn SSD Sideswipe same direction
MO Moving object sV Single vehicle (all severity
. . . levels)
MV Multiple vehicle (all severity
levels) SV FIXEDOBJ  Single-vehicle fixed object
MVD Multiple-vehicle driveway SV OTHER Single-vehicle other
related i ) i
SV OTHEROBJ Single-vehicle other object
MVN Multiple-vehicle non-driveway o . ) )
TID Turning intersecting direction
related
MVN OTHER  (MVN minus RE, HO, SSD and TOD Turning opposite direction
SOD) TOT Total
MVO Multiple-vehicle other TSD Turning same direction
NIGHT Nighttime
Severity levels
K Fatal injury
A Incapacitating injury
B Non-incapacitating injury
C Possible injury
0 No injury or property damage only

Copyright National Academy of Sciences. All rights reserved.


http://www.nap.edu/26164

Improved Prediction Models for Crash Types and Crash Severities

Facility types

2U  Two-lane undivided

4SG Four-leg signal-controlled

3SG Three-leg signal-controlled 4ST Four-leg stop-controlled

3ST Three-leg stop-controlled

4U  Four-lane undivided

3T  Two-lane plus two-way left-turn lane 5T Four-lane plus two-way left-turn lane

4D  Four-lane divided

Variables (with definitions)
AADT

AADT s

AADTmin

AADTtot

Automated Enforcement
DWYDENS
FODensity
Length
Lighting
MajComm
Majlnd
MajRes
MinComm
Minind
MinRes
MedWidth
OffsetFO
OtherDwy

Parking

Average annual daily traffic
AADT on the major road (higher volume)
AADT on the minor road (lower volume)

AADT (vehicles per day) for minor and major-road combined
approaches

Indicates if automated speed enforcement is present
Number of driveways per mile

Fixed object density per mile

Segment length in miles

Indicates if lighting is present or not

Number of major commercial driveways

Number of major industrial driveways

Number of major residential driveways

Number of minor commercial driveways

Number of minor industrial driveways

Number of minor residential driveways

Median width in feet

Average distance from traveled way to fixed objects in feet
Number of driveways of other type

Indicates presence of on-street parking
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ParkingProp Proportion of curb length with on-street parking
Parking Type Indicates angled or parallel on-street parking
Speed Limit Posted speed limit in miles per hour
Other Abbreviations
AASHTO American Association of State Highway and Transportation Officials
AlC Akaike’s Information Criterion
BIC Bayesian Information Criterion
CMF Crash modification factor
DOT Department of Transportation
FHWA Federal Highway Administration
GLM Generalized linear model
GOF Goodness of fit
HSIS Highway Safety Information System
HSM Highway Safety Manual
MAD Mean absolute deviation
MSPE Mean squared prediction error
NB Negative binomial
OH Ohio
SPF Safety performance function
XV

Copyright National Academy of Sciences. All rights reserved.


http://www.nap.edu/26164

Improved Prediction Models for Crash Types and Crash Severities

SUMMARY

This report describes efforts to develop improved crash prediction methods for crash type and severity
for the three facility types covered in the 2010 Highway Safety Manual (HSM)—specifically, two-lane rural
highways, multilane rural highways, and urban/suburban arterials. For each, models were estimated for
undivided and divided (multilane rural and urban/suburban only) segments and three- and four-leg stop-
controlled intersections and four-leg signal-controlled intersections (also three-leg signal-controlled
intersections for urban/suburban arterials). The models use data for segments and intersections with
“base conditions” that are defined specifically for each facility type. Only the observations that satisfy the
defined base conditions were used for estimating these models. For urban/suburban arterial segments,
because no sites met all base conditions for roadside fixed objects and median width, these variables were
included in the models only if considered appropriate for that crash type and if the variable was
statistically significant in the model and with the expected direction of effect. For some crash types, the
number of driveways was also directly included in the models where warranted. These base condition
models provide predictions that can be adjusted for actual conditions at a place of prediction, such as lane
and shoulder width, the presence of lighting, and other pertinent factors. Content describing these models
and instructions for applying them has been prepared for inclusion in the second edition of the HSM. A
revisit of the HSM’s procedure for calibrating prediction models for transfer to other jurisdictions is also
described and recommendations for updating that procedure offered. Average condition models were
also estimated using all available valid data points available from the state data used for each facility type;
these are provided in an appendix.

For most facility types, crash count models are estimated to predict four aggregated crash types: same-
direction, intersecting-direction, opposite-direction, and single-vehicle crashes. For urban/suburban
arterial segments, crash count models are estimated for more disaggregated types—for example, rear
end, sideswipe-same-direction, combined head-on and opposite-direction sideswipe crashes and night
crashes. Models for predicting total crashes were also estimated for all facility types. The count of total
crashes may not be equal to the sum of the individual crash type counts because in a few cases there may
have been missing variables that would have prevented a crash from being identified as a particular type
of crash, but it was still included in total crashes. If a total crash prediction is required, the total crash
model should be used rather than adding together all of the crash type models.

For all facility types except urban/suburban arterial segments, crash severity count models are also
estimated for each aggregated crash type and for total crashes. For urban/suburban arterial segments,
they are estimated for total crashes only. These models are estimated cumulatively—that is, for the
following levels:

e Crashes resulting in fatal and incapacitating injuries (KA)
e Crashes resulting in fatal, incapacitating, and non-incapacitating injuries (KAB)
e Crashes resulting in fatal, incapacitating, non-incapacitating, and possible injuries (KABC)

e All severity levels (KABCO)

XVi
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The sample of fatal injury crashes (K) was too small for all facility types to estimate meaningful models.
Average proportions must be computed using local jurisdiction data to allocate KA crashes between K and
Aif a K crash predictive model is needed, provided the count of these crashes is large enough to estimate
a proportion reliably. If a count for a specific crash type and level of severity is required, for example
single-vehicle B crashes, the prediction for single-vehicle KA crashes can be subtracted from the prediction
for single-vehicle KAB crashes to get a prediction for single-vehicle B crashes.

Also revisited was the procedure for calibrating HSM prediction models for application in jurisdictions
other than the locations providing the data used to estimate the safety performance functions (SPFs). The
current HSM method was compared with methods proposed by other researchers by calibrating the newly
estimated models with data from other jurisdictions. This comparison included evaluating the association
between calibration accuracy and calibration sample size, using both a constant calibration factor and an
estimated calibration function that relates the factor to the model prediction. The findings suggest the
procedure provided by the HSM is still reasonable, although the calibration function yields better accuracy
than the constant factor, and sample sizes required for a reliable calibration are sometimes larger than
the minimum recommended and can only be iteratively determined. The calibration function could not
be estimated with very small sample sizes.

It is noted that estimation and application of crash prediction models is dependent upon having datasets
of sufficient size and quality. It was not possible to estimate models for K only crashes for any crash types
or in total for any facility type due to the small number of these crashes in any of the data sets. For some
crash types, such as same direction crashes, KA crash models also could not be estimated. It is also noted
that many of the roadway characteristic variables that are necessary for estimating and applying these
models, for example numbers of driveways of different types and intersection skew angles, are not
routinely archived by all transportation agencies. For estimation and validation of these models it was
necessary to engage in data collection efforts to augment data provided by the transportation agencies
that were used in the project. In order to use these prediction procedures, most agencies will likely need
to augment their own data archives with additional roadway characteristics.

Appendices to the report provide the following:

1. Documentation of additional models that were estimated—specifically, for average crash models
that were estimated using all available data, not just those that met the base conditions

2. Documentation of exploration of a probabilistic approach to predicting crash severity that is not
being recommended for prediction

3. Content that has been prepared for inclusion in the second edition of the HSM

Xvii
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1 BACKGROUND

1.1 PROJECT BACKGROUND

The release of the Highway Safety Manual (HSM) by the American Association of State Highway and
Transportation Officials (AASHTO) in 2010 was a landmark event in the practice of road safety analysis.
Before it, the United States had no central repository for information about quantitative road safety
analysis methodology. Consequently, road safety analysts would use methods they were already familiar
with or that were easy to locate, which were not necessarily the most appropriate for the analysis context,
let alone reflective of the most current knowledge. The HSM provides a single source for methodology
and guidance for answering questions about road safety for road segments, intersections, and projects.
Numerous state and local road authorities apply HSM methods through the AASHTO lead state initiative.

As revolutionary as it has been for the practice of road safety analysis, it is understood that the 2010 HSM
is only a first edition, and room for improvement remains. The various predictive method chapters, for
example, offer different approaches for predicting crashes by collision type and severity. Most of these
apply aggregate proportions to predictions of total crashes, without accounting for the possibility that the
proportion of crashes by type or severity level might be associated with a mixture of predictor variables
observed at the location—in particular, traffic volume. Resolving this issue is the basis for this project.

Accurately predicting crashes by collision type and severity is important for the following reasons:

1. Many crash modification factors (CMFs) in the HSM apply only to certain collision types or crashes at
certain severity levels. Their proper application requires accurate prediction of the number of crashes
of the corresponding collision type and severity level.

2. The safety management methodology in Part B, Chapter 7 of the HSM includes economic evaluation
of the expected crash outcomes of road improvement scenarios. These evaluations apply CMFs to
improve estimates of crashes without the improvement obtained by applying standardized
proportions of different crash types and severity levels to the predicted total crash count by type and
severity level. Fully accounting for all of the factors associated with crash type and severity will result
in better prediction of these counts and, thus, more accurate economic evaluations and more efficient
allocation of scarce safety improvement resources.

3. Collision type and crash severity are usually associated with one another (Golob et al. 1987; Chang
and Mannering 1999; Kockelman and Kweon 2002; Zhang et al. 2007). Predicting them individually
potentially ignores strong associations, leading to less accurate predictions.

1.2 PROJECT OBJECTIVES
The objectives of the project (as defined in the scope of work) are to produce the following:

1. Crash severity and crash type safety performance functions (SPFs) or distributions or both that can be
used in the estimation of the types and severity of crashes likely on the facility types contained or
intended for use in the HSM:

We present in this report SPFs for crash type and severity.
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2. Recommendations for how the research results can be incorporated into the HSM and associated tools,
including the development of associated chapters or chapter content in AASHTO standard format for
the HSM second edition, and recommended procedures for consistent use of crash severity and crash
type SPFs or distributions or both:

Recommendations are provided in the conclusions; draft content for the HSM is provided in Appendix
C.

3. A description of the statistical and practical advantages and disadvantages of the methodology
developed in the research and potential barriers to implementation:

The description is provided in this report.
The remainder of the report is organized as follows:

e Section 2 provides an overview of our modeling approach common to all facility types.

e Section 3 provides the results of the work on two-lane rural highways.

e Section 43.2.2 provides the results of the work on multilane rural highways.

e Section 5 provides the results of the work on urban and suburban arterials.

e Section 6 provides the results of the work on calibration and validation of all models.

e Section 7 provides conclusions and recommendations about how to incorporate the report
findings into the HSM.
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2 ANALYSIS APPROACHES

2.1 SCOPE OF REPORT
We report here two types of crash frequency models by crash type and crash severity.

Base condition models are estimated using only sites that meet the “base condition” and include only
traffic volume as an explanatory variable; these models support the HSM Part C predictive methodology.

Average condition models are estimated using all sites and contain exposure-related variables, such as
average annual daily traffic (AADT) and driveways; they apply for average conditions of non-exposure
variables.

For most facility types, we report base condition models to keep these models compatible with the
methodology of the current HSM. For a few facility types, we needed to relax some of the base condition
definitions to achieve a large enough sample size to estimate significant models. For a few facility types,
the total sample size was much smaller, so we had to use all cases to estimate significant models; we
report average condition models for these facility types, as well as for the rest of the facility types in
Appendix A.

This report does not contain probabilistic crash severity models or models that include both exposure and
non-exposure covariates. As will be discussed later, our efforts to estimate these types of models were
unsuccessful. This section of the report documents our crash type definitions, our estimation approach
for crash count models, our exploration of probabilistic crash severity models, and our exploration of
improvements for the model calibration procedure.

2.2 CRASH TYPE DEFINITIONS

2.2.1 Crash Types
The selection of crash types for which models would be developed was based on several criteria:

1. The crash types included in the current HSM chapters for which proportions of total crashes are
provided

2. The crash types identifiable from electronic crash records in the datasets used for the project

3. The crash types represented in the estimation and validation datasets

4. The crash types to which available CMFs in the HSM apply for each site type

While we tried to maintain consistency of the crash types estimated among all facility types, consideration
of these criteria did result in some differences in the final array of crash type models from one facility type
to another.

Note that models for pedestrian and bicycle crashes have not been estimated due to very small sample
sizes in the available data. These crash types may still be analyzed using the existing HSM approach.

Note also that animal collisions are not included in any of the crash types (they are most likely to be
identified as single-vehicle crashes). Our rationale for the omission is that animal crashes have more to do
with environmental factors than road characteristics. Since the HSM predictive methods are focused more
on providing guidance for selecting safety treatments or predicting expected crash counts related to road
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characteristics, it is not clear how models predicting animal collisions would fit into the model framework.
We note the existence of a large body of research into animal—vehicle collisions and suggest that body of
work be consulted for consideration of this collision type in safety management procedures.

We have defined the crash types shown in Figure 2-1 to estimate models:

Same Direction Intersecting Opposite Single Vehicle
(SD) Direction (ID) Direction (OD) (SV)

e Rear End (RE) e Angle (ANG) e Head On (HO) e Overturn or

* Sideswipe e Turning * Sideswipe Roll Over (RO)
Same Direction Intersecting Opposite e Fixed Object
(SSD) Direction (TID) Direction (SOD) (FO)

e Turning Same e Turning * Moving Object
Direction (TSD) Opposite (MO)

Direction (TOD)

Figure 2-1: General Taxonomy of Crash Types

The taxonomy shown in Figure 2-1 provides for several levels of disaggregation of the crash types
according to the number of vehicles involved, their direction of travel, and the manner of the collision.
The justification for creating these categories is as follows:

e Each crash type within each category involves vehicles colliding in the same way—that is, front to
front, front to rear, front to side, and so on. This results in similar crash severity profiles, as
confirmed by Zhang et al. (2007).

e Each crash type within each category is associated with a similar distribution of contributing
factors, as assigned by investigating officers (Zhang et al. 2007). This suggests common covariates
and exposure functions for these associated collision types.

e Single-vehicle and opposite-direction crashes have very different relationships with exposure
(Ilvan 2004), so while their collision patterns and contributing factors are similar, they could have
very different model forms.

e Experience with crash type prediction suggests that splitting the crash count into too many
categories cripples the estimation process, as the crash count for each type gets smaller and
smaller. The aggregation categories defined here permit finding a balance that maximizes
differences in crash severity and likely causal factors between groups and minimizes them within
groups.

The data did not support successful estimation of models for all of these crash types for each facility type,
such that coefficients on the AADT variables were not significant or received negative coefficients, there
were insufficient numbers of observed crashes or the models did not converge. Also, for the
urban/suburban segment models, multiple-vehicle crashes were classified as “driveway related” (MVD)
and “multiple-vehicle non-driveway other” (MVN). In these cases, MVD included the following subtypes:
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turning same direction (TSD), all intersecting direction (ID) types, and turning opposite direction (TOD).
MVN included rear end (RE), head-on (HO), sideswipe same direction (SSD), sideswipe opposite direction
(SOD), and MVN other (that is, crashes coded as parked vehicle or angle, though not at driveways or
intersections). In addition to the above taxonomy, we estimated nighttime crashes (Night) for some
facility types (Urban/suburban segments). Table 2-1 lists the base condition crash type models that were
estimated for each facility type.

Table 2-1: Base Condition Crash Type Models Estimated for Each Facility Type

Facility |\ mvp [ mvn | MYN | sp [ Re | ssp | D | ob | Ho | HOF | sv | wigHT
Type OTHER SOoD

Two-lane rural
2U X X X
3ST X X X X
4ST X X X
4SG X X X
Multilane rural
4U X X X X
4D X X X X
3ST X X X X
4ST X X X X
4SG X X X X
Urban/Suburban arterials
2U X X X X X X X
3T X X X X X X X X
4U X X X X X X X X
4D X X X X X X X X
5T X X X X X X X X
3ST X X X X
4ST X X X X
3SG X X X X
4SG X X X X

Notes: Facility type codes—2U = two-lane undivided segments; 3T = two-lane segments with two-way left-turn
lane; 4U = four-lane undivided segments; 4D = four-lane divided segments; 5T = four-lane segments with two-way
left-turn lane; 3ST = 3 leg stop-controlled intersections; 4ST = four-leg stop-controlled intersections; 3SG = three-
leg signal-controlled intersections; 4SG = four-leg signal-controlled intersections.

Crash type codes—MVD = multiple-vehicle driveway related; MVN = multiple-vehicle non-driveway related; MVN
OTHER = multiple-vehicle other; SD = same direction (all severity levels); RE = rear end; SSD = sideswipe same
direction; ID = intersecting direction; OD = opposite direction (all severity levels); HO = head-on; HO+SOD =
sideswipe + opposite direction; SV = single vehicle (all severity levels); NIGHT = nighttime.
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2.2.2 Delineation of Intersection Versus Segment Crashes

In the HSM methodology, roadway segment models are used to predict all crashes that occur on portions
of roadway segments that are more than 250 feet from an intersection and non-intersection-related
crashes that occur on portions of roadway segments that are within 250 feet of an intersection.
Intersection models are used to predict all intersection and intersection-related crashes that occur within
250 feet of the intersection. The models for two-lane rural roads and for urban and suburban and
suburban arterials apparently were developed to facilitate this application directly.

For multilane rural roads in states where the crash records do not indicate “intersection” or “intersection-
related,” all crashes occurring within 250 feet of the middle of an intersection are assigned to that
intersection. The calibration procedure is expected to allow models developed for such cases to be applied
to cases specified in the HSM methodology, and vice versa.

These models were developed to be as consistent with the HSM methodology as possible. In the Ohio
database used for urban and suburban arterials and the California database used for multilane rural roads,
however, crashes cannot reliably be identified as intersection or intersection-related. Thus, the
intersection models being developed for those two databases and facility types will pertain to all crashes
occurring within 250 feet of the center of an intersection, and the segment models will apply to crashes
occurring outside this boundary. As noted previously, the calibration procedure will allow these models
to apply to cases where intersection and intersection-related crashes can be identified in accordance with
the HSM methodology.

2.3 MODEL ESTIMATION APPROACH

2.3.1 Crash Count Models

Because crash frequency is a count phenomenon, negative binomial (NB) regression models, or other
count distribution estimation methods, are commonly used to build crash prediction models. Even though
the NB model has some limitations (for example, it cannot overcome potential underdispersion problems,
and the dispersion parameter may be biased for small sample sizes), this model is still the one most
commonly used in univariate crash frequency data analysis. The NB model also provides the dispersion
parameter that is required for the empirical Bayes weighting of model predictions and observed crashes
in the HSM. In this research, the NB model has been applied for all count models developed.

The NB model, also called the Poisson-Gamma model, is well known to be able handle the issue of
overdispersion in count data, where the variance exceeds the mean in violation of the definition of the
Poisson distribution. In the NB model, the mean parameter for each site, i, is

A = f(BX;) x exp(s;) (2-1)

where ¢;is a gamma-distributed disturbance term, X; is a vector of explanatory variables, and £ is a vector
of estimable parameters (coefficients on X;). The most common relationship between the explanatory
variables and A; is

f(BX;) = exp(BX;) or In[f (BX,)] = BX;. (2-2)

With this form, the relationship is also called a log-linear model. One reason the log-linear model is
popular for counts is that it ensures the dependent variable (that is, the expected number of crashes
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during a certain time period) is always positive or zero. Another reason is that taking the log of both sides
of the equation results in a linear combination of the predictor variables (that is, the X’s) on the right-hand
side. This model form belongs to a category called generalized linear models (GLMs). In a GLM, the
regression coefficients and their standard errors are typically estimated by maximizing the likelihood or
log likelihood of the parameters for the data observed.

The variance of the NB model can be estimated as
VAR[y;] = Ely;] + a(E[y;])?, (2-3)
where y is the crash frequency data and a is the dispersion parameter.

2.3.2 Alternatives for Model Form
SPFs for roadway segments are formulated as

where

N = expected average crash frequency per year for a roadway segment;
AADT = annual average daily traffic (vehicles per day) on a roadway segment;
L = length of roadway segment (miles); and

bo, b; = regression coefficients.

The value of the overdispersion parameter associated with N is determined as a function of segment

length for two-lane and multilane rural facility segments as follows:

ke = 1/exp[c + In(L)] (2-53)

The following function was used for the overdispersion parameter for urban/suburban facility segments
(except as noted for individual models):

k = e% P2 (2-6)

For intersections, two alternative functional forms were considered:

N = exp[by + by X In(AADT,nq;) + by X In(AADTy1)] (2-7)
and

N = exp[by + b3 X In(AADT;pta1)], (2-8)
where

N = base total expected average crash frequency per year for an intersection;

AADT = AADT (vehicles per day) for major-road approaches;

AADTin = AADT (vehicles per day) for minor-road approaches;

AADT:otar = AADT (vehicles per day) for minor- and major-road approaches combined; and
bo, bi, bz, bs = regression coefficients.

In this research, only AADTpaj, AADTmin or AADT:0tar Were used for exposure for the SPFs, to be consistent
with the HSM. Nevertheless, it is possible that different combinations of exposure variables can better
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explain the number of crashes (Wang et al. 2017). For some facility types, other model forms were used;
this is explained in detail in the relevant sections below.

2.3.3 Model Estimation and Fit Statistics

SPFs for all facility types and crash categories were estimated using standard statistical packages, such as
SAS®. As indicated above, the negative binomial distribution was used to start. When the negative
binomial overdispersion parameter estimated by maximum likelihood (k) is found to be 0, which
happened for several intersection models, this indicates a Poisson distribution is more appropriate (IDRE-
UCLA, SAS User Guide). We re-estimated the models with a Poisson distribution in those cases and report
both models.

In addition to the parameter estimates and standard errors and the overdispersion parameter, the tables
also provide the Akaike’s Information Criterion (AIC) and the Bayesian Information Criterion (BIC). Both
consist of a goodness-of-fit term (log likelihood), along with a penalty to control for overfitting, and this
penalty is a function of the number of parameters estimated. With both the AIC and BIC, lower is better.
For a discussion of AIC and BIC, readers are referred to Dziak et al. (2012); suffice to say here that BIC
provides a larger penalty for the number of parameters. Dziak et al. (2012) indicate that, while the BIC is
more likely to lead to a more parsimonious model with some risk of underfitting, the AIC could lead to a
model with good future prediction with some risk of overfitting, and the use of AIC versus BIC may depend
on the application.

The mean absolute deviation (MAD) gives a measure of the average magnitude of variability of prediction.
Smaller values are preferred to larger in comparing two or more competing SPFs. The MAD is the sum of
the absolute value of predicted crashes minus observed crashes, divided by the number of sites. The
values of predicted and observed crashes are from the calibration data:

MAD = Zilﬁril—yz'l, .
where

y; = observed counts;

y, = predicted values from the SPF; and

n = validation data sample size.

The mean squared prediction error (MSPE) is the sum of squared differences between observed and
predicted crash frequencies, divided by sample size. MSPE is typically used to assess error associated with
a validation or external data set:

MSPE = Zi(f/in—yl')z’ 10
where

y; = observed counts;

¥, = predicted values from the SPF; and

n = validation data sample size.
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Washington et al. (2005) gives guidelines for interpreting fit statistics and evaluating the suitability of
crash prediction models.

2.3.4 Crash Severity Modeling

In general, crashes are classified into five severity levels: fatal injury (K); incapacitating injury (A); non-
incapacitating injury (B); possible injury (C); and no injury or property damage only (O). Cumulative values
of these levels are commonly defined, building from the highest level, e.g., KA indicates K and A level
crashes, KAB indicates K, A and B crashes, etc. For analyzing crash severities, the research team considered
several methodologies. First, we considered ordered logit and probit models, using each crash as an
observation. These models would have been used to split crash counts into categories of severity. In the
preliminary results, some roadway geometric characteristics were found to be statistically significant.
They showed that higher maximum speed limits and paved shoulders decrease the severity of a crash,
whereas wider lanes increase it, which is clearly counterintuitive. Consequently, we suspected omitted
variable bias occurred in the models causing these erroneous results, as they did not include individual or
crash characteristics (such as driver, passenger, vehicle, and so on), which are usually found most valuable
for predicting the severity of individual crashes.

Consequently, we considered an alternative approach to investigating crashes by severity on an aggregate
basis. This better suited the available data as well as the implementation context for the HSM, in which
prediction by road segment or intersection is required, and demographic information about travelers is
not available. Specifically, we considered a fractional split modeling approach, in which the proportion of
crashes by severity level is predicted for each segment or intersection. The methodology and modeling
results are excerpted from Yasmin et al. (2016) and summarized in Appendix B. The rest of this section
summarizes the fractional split approach and our findings and recommendations regarding crash severity
prediction.

Traditionally, the transportation safety literature has evolved along two major streams: crash frequency
analysis and crash severity analysis. In crash frequency analysis, the focus is on identifying attributes that
result in traffic crashes and effective countermeasures to improve the roadway design, and operational
attributes are proposed. Crash severity analysis, on the other hand, is focused on examining crash events,
identifying factors that affect the outcome, and providing solutions to reduce the consequences—injuries
and fatalities—in the unfortunate event of traffic crashes. Recently, research in transportation safety has
begun to bridge the gap between crash frequency and crash severity models. Specifically, researchers are
examining crash frequency levels by severity while recognizing that, for the same observation record,
crash frequencies by different levels of severity are likely to be dependent. Hence, as opposed to adopting
the earlier univariate crash frequency models, researchers have developed multivariate models.

In multivariate approaches that are aimed at studying frequency and severity, the impact of exogenous
variables is quantified through the propensity component of count models. The main interaction across
different severity-level variables is sought through unobserved effects—that is, no interaction of observed
effects occurs across the multiple count models. While this might not be a limitation per se, it might be
beneficial to evaluate the impact of exogenous variables in a framework that directly relates a single
exogenous variable to all severity count variables simultaneously. It is a framework where the observed
propensities of crashes by severity level are modeled directly, while also recognizing the inherent ordering
of crash severity outcomes.
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The fractional split approach is not without limitations. In field data, there are often no crashes for some
specific crash severities in a given case—for example, fatal injury crashes. When this happens, such a
segment cannot be used for modeling. To avoid cases with zero crashes for any of the severity levels, the
research team aggregated roadway segments into extended super-segments (or arterials). To do this, the
severity proportions had to be assumed to be consistent over all segments and intersections included in
each super-segment, which was not very practical. In addition, once we aggregated the segments,
information specific to them was lost. For these reasons, the research team decided not to adopt the
fractional split model for predicting crash severity. Instead, we recommend predicting crash severity using
count models, as we do for crash type.

2.4 ESTIMATION AND VALIDATION DATA

Estimating crash prediction models for the HSM requires datasets with adequate size, quality and scope
of variables. Very few highway agencies have such data readily available. In order to limit the extent of
the project budget expended on data collection, existing data sources were acquired to the extent
possible for each facility type. It was also considered to be desirable to use data from the same states as
were used to estimate models for the First Edition of the HSM for consistency. Two sources of readily
available data were considered:

e The Highway Safety Information System (HSIS). HSIS is a multistate database that contains crash,
roadway inventory, and traffic volume data for a select group of states. When HSIS was initially
established, participating states were selected based on the quality and quantity of data available,
and their ability to merge data from various files. For estimating the prediction models, HSIS data
from Washington (two-lane rural segments), Minnesota (two-lane, multilane rural intersections
and urban and suburban segments) and California (multilane four-lane divided segments) were
used.

e Ohio Department of Transportation (ODOT). Ohio is part of HSIS. However, in addition to the
Ohio data that is part of HSIS, Ohio embarked upon a comprehensive project to collect data for
implementation of the HSM and graciously provided the data they have assembled.

In order to validate the estimated models it was necessary to have data from at least one more
jurisdiction. The above datasets were sufficient for two-lane rural highways, but additional data sources
had to be identified and in most cases data elements collected in order to form validation datasets. Table
2-2 lists the source of the data for estimation and validation for segments and intersections for each
facility type. The subsequent chapters discuss the datasets in more detail, but a few overall notes about
the selection of data are in order at this stage:

e For 4-leg signalized (4SG) intersections on two-lane and multilane rural highways, the Ohio
dataset is used for model estimation because it has more cases than the Minnesota dataset. In
the First Edition of the HSM, Minnesota data were used to estimate those models. Consequently,
the base predictions for these models will be quite different from those made by the First Edition
models.

e For four-lane undivided segments on multilane rural highways, only one state (Texas) could
provide a useful dataset. Consequently, three years of the data were used for estimation and the
fourth year used for validation.

10
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e For four-lane divided segments on multilane rural highways, data from two states are used for
validation as all none of the three state databases were as large as would have been preferred,

and having two states to validate against helped to better test the resulting models.

Table 2-2: Data Used for Estimation and Validation

Facility Type Segments Segments Intersections Intersections

Estimation Validation Estimation Validation
Two-lane rural Washington Ohio 3ST: Minnesota 3ST: Ohio
highways 4ST: Minnesota 4ST: Ohio

4SG: Ohio 4SG: Minnesota

Multilane rural 4U: Texas 4U: Texas (2012) 3ST: Minnesota 3ST: Ohio
highways (2009-11) 4D: Illinois & 4ST: Minnesota 4ST: Ohio

4D: California | Washington 4SG: Ohio 4SG: Minnesota
Urban/suburban Ohio Minnesota Ohio North Carolina
arterials

Notes: Facility type codes—2U = two-lane undivided segments; 3T = two-lane segments with two-way left-turn
lane; 4U = four-lane undivided segments; 4D = four-lane divided segments; 5T = four-lane segments with two-way
left-turn lane; 3ST = 3 leg stop-controlled intersections; 4ST = four-leg stop-controlled intersections; 3SG = three-
leg signal-controlled intersections; 4SG = four-leg signal-controlled intersections.

Copyright National Academy of Sciences. All rights reserved.
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3 MODELS FOR TWO-LANE RURAL HIGHWAYS

3.1 ROADWAY SEGMENTS

3.1.1 Estimation and Validation Data

To predict crash frequency and severity on two-lane rural highways, the research team estimated and
validated base condition SPFs for undivided roadway segments. To develop SPFs for undivided segments
(2U), we used segment crash and road characteristics data from Washington State (2008—12). To validate
2U SPFs, we used the same kind of data from Ohio (2009-11).

As shown in Table 3-1, some of the variables defining base conditions in the current HSM are not available
in the Washington data: driveway density, vertical curvature, lighting, and use of automated speed
enforcement. Knowledge of the roads of this facility type in Washington suggests we can safely assume
lighting and automated speed enforcement are absent from nearly all of the segments in the database. A
total of 361 2U segments meet the HSM base conditions (other than the four missing variables). We used
these to estimate base condition models. Table 3-2 and Table 3-3, respectively, present descriptive
statistics for the base condition SPFs and their validation datasets. For validating 2U SPFs, only 21
segments meet the HSM base conditions with shoulder width of six feet; therefore, we used shoulder
width ranging from four to seven feet in our dataset to represent the base condition sites. We found a
total of 321 segments with this relaxed shoulder width and used them for validating the 2U SPFs.

Table 3-1: HSM Base Conditions and Data Availability, Two-Lane Undivided (2U) Segments

Base Condition HSM Base Condition Available in Available in Ohio
Washington Data? Data?

Lane width 12 feet YES YES
Shoulder width 6 feet YES YES
Shoulder type Paved YES YES
Roadside hazard rating 3 YES YES
Driveway density 5/mile NO YES
Horizontal curvature None YES YES
Vertical curvature None NO NO
Centerline rumble strips None YES YES
Passing lanes None YES YES
Two-way left-turn lanes None YES YES
Lighting None NO YES
Automated speed None NO VES
enforcement

Grade level 0% YES NO

12
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Table 3-2: Descriptive Statistics for Base Condition SPF Estimation, Two-Lane Undivided (2U)

Segments
Variable .
WA (N = 361, 164.19 miles) Mean S.D. Min Max
Segment length (mi) 0.454 0.528 0.1 5.42
AADT (veh/day) 4,573 4,121 210 21,622
Lane width (ft) 12 0 12 12
Shoulder width (ft) 6 0 6 6
Crash Type Severity 2[5 Mean S.D. Min Max
Crashes
KABCO 996 2.759 3.703 0 31
Total KABC 330 0.914 1.583 0 12
KAB 187 0.518 1.041 0 7
KA 57 0.158 0.441 0 3
KABCO 204 0.565 1.375 0 12
Same direction KABC 79 0.219 0.641 0 4
KAB 30 0.083 0.340 0 3
KA 2 0.006 0.074 0 1
KABCO 0 0 0 0 0
Intersecting KABC 0 0 0 0 0
direction KAB 0 0 0 0 0
KA 0 0 0 0 0
KABCO 176 0.488 1.216 0 16
Opposite KABC 80 0.222 0.633 0 7
direction KAB 55 0.152 0.496 0 5
KA 31 0.086 0.309 0 2
KABCO 616 1.706 2.343 0 17
Single vehicle KABC 171 0.474 0.960 0 7
KAB 102 0.283 0.694 0 5
KA 24 0.066 0.281 0 2
13
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Table 3-3: Descriptive Statistics for Base Condition Validation Data, Two-Lane Undivided (2U)

Segments
Variable .
Ohio (N = 321, 131.1 miles) Mean | S.D. | Min | Max
Segment length (mi) 0.408 | 0.397 | 0.1 2.65
AADT (veh/day) 5,162 | 2,852 | 490 | 15,340

Lane width (ft) 12 0 12 12
Shoulder width (ft) 4.623 | 0.973 | 4 7

Crash type Severity 2[5 Mean | S.D. | Min | Max

Crashes

KABCO 850 2.648 | 4.235 0 33
Total KABC 195 0.607 | 1.176 0 10
KAB 146 0.455 | 0.925 0 6
KA 34 0.106 | 0.346 0 3
KABCO 115 0.358 | 0.901 0 8
Same direction KABC 55 0.171 | 0.486 0 4
KAB 33 0.103 | 0.324 0 2
KA 5 0.016 | 0.124 0 1
KABCO 0 0 0 0 0
Intersecting direction KABC 0 0 0 0 0
KAB 0 0 0 0 0
KA 0 0 0 0 0
KABCO 58 0.181 | 0.479 0 3
Opposite direction KABC 32 0.100 | 0.339 0 2
KAB 27 0.084 | 0.300 0 2
KA 8 0.025 | 0.175 0 2
KABCO 652 2.031 | 3.368 0 22
Single vehicle KABC 100 0.312 | 0.691 0 5
KAB 79 0.246 | 0.574 0 4
KA 18 0.056 | 0.230 0 1

3.1.2 Estimated Models

We estimated SPFs for rural two-lane highway segments as described in Section 2. Again, for convenience,

the model form is given by

N = exp|by + by X In(AADT) + In(L)],

and the overdispersion parameter is determined by

e = 1/exp[c + In(L)]

(3-1)

(3-2)

Table 3-4 presents the estimated base condition SPFs for rural two-lane segments; estimated coefficient
values and standard errors (in parentheses) are shown, along with the estimated dispersion parameter
and fit statistics, as defined in Section 2.3.3. All of the estimated coefficients look reasonable, and all but

a few are statistically significant. The fit statistics are also within reasonable ranges.

14
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Table 3-4: Base Condition SPFs, Two-Lane Undivided (2U) Segments

Crash Type
Washington Severity bo b, c =2LL AIC MAD
(N = 361, 164.19 mi.)
-7.463 0.927 1.999
KABCO 05200 | 0062 | (160 1364.6 | 13706 1.722
-9.006 0.977 1.479
o KABC 0799 | 0095 | (0255 825.9 831.9 0.831
-8.499 0.852 1.100
KAB ooy | 010 | ©32) 618.2 624.2 0.574
-9.853 0.872 2.527*
KA w1 | 012 | (2703 301.7 307.7 0.239
15456 | 1.658 1214
KABCO ace | (0138 | (0292) 580 586 0.583
17.721 | 1.807 1.326
—— KABC wesn | ©10) | (0550 334.2 340.2 0.283
(Ag 16183 | 1526 1.355" 1527 1087 0133
(2.313) | (0.262) | (1.339) ' ' :
KA 17.266 | 1.341" | 13.434
(2 crashes) | (7.845) | (0.887) () 276 33.6 0.011
10525 | 1.085 0.636
KABCO 1230 | 0149 | (025 628.1 634.1 0.594
11461 | 1.100 0.582*
N KABC 1o | 0185 | (0.430) 379.7 385.7 0.318
PP (Ag 210972 | 0.999 0.228" 2627 . 0234
(1.842) | (0.218) | (0.517) : : :
11190 | 0.947 30.408
KA 2021 | 0235 | 01 191.3 197.3 0.137
-5.798 0.674 2.005
KABCO 0572 | ©069) | (0229 11207 | 11267 1217
-6.582 0.613 1117
- KABC 0079 | ©117) | ©3) 573.4 579.4 0.520
-6.919 0.592 0.809
KAB w27 | 0128 | (0.a60) 4222 428.2 0.372
-10.949 | 0.899 0.446"
KA (2381) | (0.280) | (1.254) 166 172 0.118

“Moore-Penrose inverse is used in covariance matrix.
# Not significant at 90th percentile confidence interval.

3.1.3 Validation of Models
The prediction models for road segments were validated using the Ohio data. Table 3-5 displays the results
for each model, including the total observed crashes, the total crashes predicted using these estimated
SPFs and the HSM methodology, and two measures of effectiveness, the MAD and the MSPE (as defined
in Section 2.3.3). We then calibrated these predictions using the HSM calibration methodology and
provided the MAD and MSPE of these values. Finally, we estimated the calibration function defined in
Srinivasan et al. (2016) for the dataset for each crash category; the Srinivasan method is described in detail

in Section 6.1.1.

The resulting predictions and fit statistics are provided, and the predicted results are reasonable. In
general, the calibration function performs slightly better than the calibration factor. Because the number

Copyright National Academy of Sciences. All rights reserved.
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of observed same-direction KA crashes is small, the calibration factor is the highest of all crash categories
(3.848, compared to the second highest, 1.749, for SV KABCO), and the calibration function fails to
converge. In general, the models calibrate reasonably well for the Ohio data.

16
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Table 3-5: Calibration and Validation of Washington SPFs Using Ohio Data, Two-Lane Undivided (2U) Segments

Calibration Factor (HSM)

Calibration Function (Srinivasan et al. 2016)

(':I"::: oc'::\i:\veid :rilr. MAD | MSPE ca::i:c’ta;:“ NFitted | MAD | MSPE a b k NFitted | MAD | MSPE
KABCO 850 | 630.218 | 1.732 | 9.906 1.349 850 | 1.819 | 9.021 (3:333) (gﬁgi) (ggg) 850.076 | 1.814 | 8.992
KABC 195 | 208.075 | 0.603 | 0.896 0.937 195 | 0.588 | 0.889 (Od%g) (8:3%) (8:‘1‘;;) 194.205 | 0.590 | 0.895
KAB 146 | 116.631 | 0.457 | 0.574 1.252 146 | 0.476 | 0.549 ?01.'121182) (g:igﬁ) (gzigg) 144.783 | 0.480 | 0.554
KA 34| 35819 0.169 | 0.106 0.949 34 | 0.166 | 0.106 ((2)9356%’; ((1):(1’22) (8:2(5’;) 34.038 | 0.166 | 0.106
SD KABCO 115 | 130.238 | 0.467 | 0.637 0.883 115 | 0.446 | 0.615 (Odiﬁ) (nggg) (833; 114.661 | 0.452 | 0.603
SD KABC 55| 50.739 | 0.234 | 0.212 1.084 55 | 0.241| 0215 (00'.7211;; (g:‘;gi) (g:gg) 54.951 | 0.253 | 0.203
SD KAB 33| 19586 | 0.130 | 0.093 1.685 33 | 0.151 | 0.091 (310101’; (g:iéé) (Oo'%%g 33.049 | 0.158 | 0.090
SD KA 5 1.299 | 0.020 | 0.016 3.848 5| 0.031 | 0.016 Failed to Converge
o &Dco 58 | 116.777 | 0.367 | 0.295 0.497 58 | 0.256 | 0.194 (g:g(l)) (ngg% (gzi;; 57.834 | 0.180 | 0.062
0D KABC 32| 52208 0204 | 0.115 0.613 32| 0.161 | 0.103 (g:ggi) (gfgé) (g:iig) 32,008 | 0.100 | 0.020
0D KAB 27| 35.284 | 0.156 | 0.083 0.765 27 | 0139 | 0.081 8;?; (8:21332) 8)%01% 27.046 | 0.084 | 0.014
0D KA 8| 18.046 | 0.075 | 0.032 0.443 8 | 0.047 | 0.030 (8:32‘1‘) (é:gii) 8’%11‘; 8.010 | 0.025 | 0.002
SV KABCO 652 | 372.703 | 1.505 | 8.067 1.749 652 | 1.536 | 6.425 ((1):(7)22) ((1):83(5’) (gzigf) 657.934 | 1.897 | 8.420
SV KABC 100 | 76.806 | 0.353 | 0.369 1.302 100 | 0373 | 0.355 (éj‘g;’) (32(1);; (852;) 100.256 | 0.315 | 0.211
SV KAB 79 | 59.956 | 0.297 | 0.258 1.318 79 | 0315 | 0.247 ((1):‘1‘;; ((1):(1’23) gg% 78.998 | 0.260 | 0.145
SV KA 18| 15.132 | 0.090 | 0.048 1.190 18 | 0.097 | 0.048 ((1):‘6“7‘;) (é:ggg) (Oo'%%%j 17.995 | 0.075 | 0.033

#Not significant at 90th percentile confidence interval.
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3.2 INTERSECTIONS

3.2.1 Estimation and Validation Data

SPFs for two-lane rural highway intersections were estimated and validated using data collected from
Minnesota and Ohio. The base conditions for three-leg stop-controlled (3ST), four-leg stop-controlled
(4ST), and four-leg signal-controlled (4SG) intersections, as shown in Table 3-6, are specified in the current
HSM. All of the variables defining base conditions for all three intersection types are available in
Minnesota and Ohio. The Minnesota data include 141 base condition 3ST intersection sites and 198 base
condition 4ST intersection sites. The Ohio data have total of 2,081 base condition 3ST intersections and
662 base condition 4ST intersections. Minnesota data were used for model estimation and Ohio data for
model validation for both the 3ST and 4ST intersections.

Table 3-6: HSM Base Conditions and Data Availability, Two-Lane Intersections

Base Condition (3ST, 4ST, and il Available in Available in Ohio
4SG) Minnesota Data Data
Intersection skew angle 0 degrees YES YES
(Not applicable for 45G)
Intersection left-turn lanes None YES YES
Intersection right-turn lanes None YES YES
Lighting None YES YES

Table 3-7 shows the sample sizes for 4SG intersections for the base and modified base conditions. None
of the 4SG intersections from the Minnesota data satisfied the base conditions, and only 48 intersections
from the Ohio data satisfied the HSM base conditions. We therefore used a modified base condition for
lighting (that is, presence of lighting = “Present”) to get a large enough sample for both model estimation
and validation. We used data from Ohio on a total of 202 4SG intersections with modified base conditions
to estimate the SPFs, and 25 4SG intersections from Minnesota were used for validation.

Table 3-7: Base Condition Criteria and Data Availability, Two-Lane Four-Leg Signal-Controlled
(4SG) Intersections

Copyright National Academy of Sciences. All rights reserved.

... ey Intersection Left- Intersection Right- Sample
Data Condition Lighting .
Turn Lanes Turn Lanes Size
Base. . Not 0 0 0
Minnesota | condition present
Modified Present 0 0 25
Base. . Not 0 0 48
Ohio condition present
Modified Present 0 0 202
18
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Table 3-8 and Table summarize descriptive statistics for, respectively, the data used to develop models
and the data used to validate them for base conditions at 3ST intersections, including the total number of
crashes at all intersections. Table 3-10 and Table 3-11 present descriptive statistics for the data used to
develop and validate models for base conditions at 4ST intersections. Table 3-12 and Table 3-13 show

descriptive statistics for 4SG intersections.

Table 3-8: Descriptive Statistics for Base Condition SPFs, Two-Lane Three-Leg Stop-Controlled

(3ST) Intersections

Minne\:zraaz!le: 141) Mean S.D. Min Max
Major AADT (veh/day) 3,033 3,393 308 | 20,092
Minor AADT (veh/day) 360 451 4 3,064
Total entering vehicles (veh/day) 3,392 3,513 316 20,824
Presence of lighting None None None None
Presence of left-turn lanes 0 0 0 0
Presence of right-turn lanes 0 0 0 0
Skew angle (°) 0 0 0 0
Crash Type Severity No. of Crashes Mean S.D. Min Max
KABCO 323 2.291 3.476 0 22
KABC 114 0.809 1.711 0 15
Total KAB 47 0.333 0.808 0
KA 10 0.071 0.308 0
KABCO 83 0.589 1.942 0 19
. KABC 35 0.248 1.190 0 13
Same direction AB T 0.085 0.485 0 c
KA 3 0.021 0.188 0 2
KABCO 39 0.277 0.634 0 4
o KABC 18 0.092 0.357 0 2
Intersecting direction AB 0.064 0.298 0 >
KA 0.021 0.188 0 2
KABCO 39 0.277 0.728 0 5
o KABC 13 0.128 0.445 0 3
Opposite direction AB 5 0.043 0203 0 1
KA 3 0.014 0.119 0 1
KABCO 162 1.149 1.521 0 8
, , KABC 48 0.340 0.664 0 3
Single vehicle AB 20 0142 0.407 0 5
KA 2 0.014 0.119 0 1

19
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Table 3-9: Descriptive Statistics for Base Condition Validation Data, Two-Lane Three-Leg Stop-
Controlled (3ST) Intersections

Ohic\)l?lrllibzlfosn Mean S.D. Min Max
Major AADT (veh/day) 2,214 1,889 90 15,340
Minor AADT (veh/day) 817 721 19 3,050
Total entering vehicles (veh/day) 3,031 2,280 135 15,845
Presence of lighting None None None None
Presence of left-turn lanes 0 0 0 0
Presence of right-turn lanes 0 0 0 0
Skew angle (°) 0 0 0 0
Crash Type Severity No. of Crashes Mean S.D. Min Max
KABCO 736 0.354 0.879 0 12
KABC 288 0.138 0.446 0 6
Total KAB 211 0.101 0.360 0 5
KA 62 0.030 0.170 0 1
KABCO 135 0.065 0.356 0 7
o KABC 54 0.026 0.194 0 4
Same direction AB ” 0.015 013¢ 0 5
KA 9 0.004 0.066 0 1
KABCO 76 0.032 0.187 0 2
. L KABC 33 0.019 0.139 0 2
Intersecting direction AB ” 0015 0127 0 5
KA 3 0.007 0.085 0 1
KABCO 67 0.037 0.223 0 3
L KABC 39 0.016 0.139 0 2
Opposite direction AB 5 0,012 0111 0 5
KA 15 0.001 0.038 0 1
KABCO 403 0.194 0.554 0 5
KABC 140 0.067 0.290 0 3
single vehicle KAB 105 | 0050 | 0.248 0 3
KA 32 0.015 0.123 0 1

Copyright National Academy of Sciences. All rights reserved.
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Table 3-10: Descriptive Statistics for Base Condition SPFs, Two-Lane Four-Leg Stop-Controlled

(4ST) Intersections

Copyright National Academy of Sciences. All rights reserved.

Minne\:z?am()ILZ 198) Mean S.D. Min Max
Major AADT (veh/day) 1,842.46 | 1,419.77 147.00 | 8,461.40
Minor AADT (veh/day) 395.83 667.09 4.00 | 4,740.00
Total entering vehicles (veh/day) 2,238.30 | 1,741.04 196.60 | 9,912.80
Presence of lighting None None None None
Presence of left-turn lanes 0 0 0 0
Presence of right-turn lanes 0 0 0 0
Skew angle (°) 0 0 0 0

Crash Type Severity | No. of Crashes Mean S.D. Min Max
KABCO 345 1.742 2.273 0 15
KABC 123 0.621 1.172 0 10
Total KAB 70 0.354 0.804 0 6
KA 17 0.086 0.346 0 2
KABCO 70 0.354 0.626 0 3
o KABC 19 0.096 0.295 0 1
Same direction AB 0 0.051 0.220 0 1
KA 3 0.015 0.122 0 1
KABCO 107 0.207 0.475 0 2
o KABC 57 0.051 0.220 0 1
Intersecting direction AB 36 0,015 0.122 0 1
KA 11 0.000 0.000 0 0
KABCO 41 0.540 1.285 0 12
. . . KABC 10 0.288 0.897 0 8
Opposite direction AB 3 0.182 Y 0 c
KA 0 0.056 0.270 0 2
KABCO 127 0.641 0.883 0 4
. . KABC 37 0.187 0.451 0 2
Single vehicle AB " 0.106 0.309 0 1
KA 3 0.015 0.122 0 1
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Table 3-11: Descriptive Statistics for Base Condition Validation Data, Two-Lane Four-Leg Stop-

Controlled (4ST) Intersections

Ohi\tl)a(rl:la:IEGZ) Mean S.D. Min Max
Major AADT (veh/day) 2,238 1,565 160 7,740
Minor AADT (veh/day) 987 970 33 4,496
Total entering vehicles (veh/day) 3,225 2,266 270 9,780
Presence of lighting None None None None
Presence of left-turn lanes 0 0 0 0
Presence of right-turn lanes 0 0 0 0
Skew angle (°) 0 0 0 0
Crash Type Severity No. of Crashes Mean S.D. Min Max
KABCO 201 0.304 0.946 0 12
KABC 103 0.156 0.562 0 7
Total KAB 84 0.127 0.491 0 7
KA 24 0.036 0.210 0 2
KABCO 30 0.045 0.229 0 2
. . KABC 12 0.018 0.144 0 2
same direction KAB 0.009 0.095 0 1
KA 0.000 0.000 0 0
KABCO 91 0.014 0.116 0 1
o KABC 63 0.005 0.067 0 1
Intersecting direction AB ” 0.005 0.067 0 1
KA 17 0.003 0.055 0 1
KABCO 0.137 0.676 0 10
. . . KABC 0.095 0.484 0 7
Opposite direction AB 5.082 0.439 0 ;
KA 0.026 0.176 0 2
KABCO 54 0.082 0.320 0 3
KABC 15 0.023 0.159 0 2
single vehicle KAB 14| 0021| 0154 0 2
KA 4 0.006 0.078 0 1
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Table 3-12: Descriptive Statistics for Modified Base Condition SPFs, Two-Lane Four-Leg Signal-
Controlled (4SG) Intersections

Copyright National Academy of Sciences. All rights reserved.

Ohi\claa(rll\la:I:OZ) Mean S.D. Min Max
Major AADT (veh/day) 5,344.55 | 2,740.54 910 14,790
Minor AADT (veh/day) 2,476.67 | 2,069.78 95 11,641
Total entering vehicles (veh/day) 7,821.22 | 4,022.69 1,201 24,690
Presence of lighting Present Present Present Present
Presence of left-turn lanes 0 0 0 0
Presence of right-turn lanes 0 0 0 0
Skew angle (°) N/A N/A N/A N/A
Crash Type Severity | No. of Crashes Mean S.D. Min Max

KABCO 454 2.248 3.390 0 25

KABC 108 0.535 1.070 0

Total KAB 63 0.312 0.724 0
KA 16 0.079 0.305 0 2
KABCO 249 1.233 2.299 0 18
o KABC 49 0.243 0.635 0 5
Same direction CAB > 0.109 0.357 0 5
KA 4 0.020 0.140 0 1
KABCO 137 0.074 0.263 0 1
. . KABC 43 0.025 0.156 0 1
Intersecting direction AB 29 0.020 0.140 0 1
KA 6 0.010 0.099 0 1
KABCO 15 0.678 1.293 0 8
o KABC 5 0.213 0.589 0 5
Opposite direction CAB 0.142 0451 0 2
KA 2 0.030 0.170 0 1
KABCO 53 0.262 0.635 0 4
. . KABC 11 0.054 0.227 0 1
Single vehicle CAB s 0.040 0.196 0 1
KA 0.020 0.140 0 1
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Table 3-13: Descriptive Statistics for Modified Base Condition Validation Data, Two-Lane Four-
Leg Signal-Controlled (4SG) Intersections

Copyright National Academy of Sciences. All rights reserved.

Minn(\el:;gtzlltla = 25) Mean S.D. Min Max
Major AADT (veh/day) 7,780 3,178 2,450 18,525
Minor AADT (veh/day) 3,472 2,692 353 10,500
Total entering vehicles (veh/day) 11,252 5,238 2,803 29,025
Presence of lighting Present Present Present Present
Presence of left-turn lanes 0 0 0 0
Presence of right-turn lanes 0 0 0 0
Skew angle (°) N/A N/A N/A N/A

Crash Type Severity | No. of Crashes Mean S.D. Min Max
KABCO 136 5.440 3.536 0 16
KABC 34 1.360 1.705 0 8
Total KAB 11 0.440 0.961 0 4
KA 1 0.040 0.200 0 1
KABCO 68 2.720 2.390 0 9
. KABC 12 0.480 0.963 0 3
Same direction AB 1 0.040 0.200 0 1
KA 0 0.000 0.000 0 0
KABCO 21 0.840 1.179 0 4
. L KABC 9 0.360 0.638 0 2
Intersecting direction AB 2 0160 0374 0 1
KA 1 0.040 0.200 0 1
KABCO 33 1.320 1.145 0 3
L KABC 0.360 0.569 0 2
Opposite direction AB 0.120 0332 0 1
KA 0.000 0.000 0 0
KABCO 14 0.560 0.821 0 3
, , KABC 4 0.160 0.473 0 2
Single vehicle AB 3 0.120 0.440 0 5
KA 0 0.000 0.000 0 0

24



http://www.nap.edu/26164

Improved Prediction Models for Crash Types and Crash Severities

3.2.2 Estimated Models

We first estimated base condition SPFs for all two-lane rural intersections using NB modeling, as defined
in Section 2. For some of these crash type—crash severity combinations, a dispersion factor of 0 was found;
for those types, we show the Poisson modeling results as well. For some models, the parameter on
AADT_min was not significant, so we estimated and show models for those crash types with total AADT
instead. Following are the model forms used (as defined in Section 2):

N = exp[by + by X In(AADT,nq;) + by X In(AADT )] (3-3)
or
N = exp|[by + b3 X In(AADT;o1a1)] (3-4)

Table 3-14 shows the NB modeling results for base conditions at 3ST intersections, while Table 3-15 shows
the Poisson modeling results for the model types with a 0 dispersion factor for these intersections. Some
of the base condition models have AADT parameter values that are not significant; this is largely due to
the small number of crashes and small sample sizes. Otherwise, the parameter values are all within
expected ranges.

Base condition SPFs for 4ST intersections are presented in Table 3-16 and Table 3-17 for base condition
models estimated using NB distribution and Poisson distribution, respectively. These results are similar to
those for the 3ST intersections and also reasonable.

Modified base condition SPFs for 4SG intersections are presented in Table 3-18 and Table 3-19 for base
condition models estimated using NB distribution and Poisson distribution, respectively.
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Table 3-14: Base Condition SPFs, Two-Lane Three-Leg Stop-Controlled (3ST) Intersections

Crash Type
Minnesota Severity by b; b, bs k =2LL AIC MAD
(N =141)
KABCO (5.'895) (g:g;g) (8:(2)23) ] (gfﬁﬁ, 253.6 | 5152 | 1633
o KABC ('119;3632;1 (Ez%} (gzzég) - (géég) 153.9 | 3159 | 0.845
KAB (1.891) (02214) ©01s3) | - | (0708 | 3% | 1945 | 0461
“ e | | o | asy | 1| 72 | 0
o | e[ am om i s | e | o
e | e [l ie 0w s | o
direction KAB (1632% ; . (ézigé) (222553;) 308 | 67.6 | 0.146
_ # *
(3 crg:hes) (152;2[)‘ - - (()d.gsssi) (%%%g) 1411 342 1 0042
o | iz oo T [ 0o | | s | o
Intersecting KABC -(éslgl? (gg;g) (822?) i (1222) 45:5 99.0 0.208
TN oamhes) | wosn | - | - | o) | ooney | 25 | 1o | oor
) : ¢
2 crI;/:hes) (1;(.)5229? - - (()6.5;265) (%%%%) 102 1 265 | 0.028
o | e o om0 | | e
owposite | | oos | 0406) | 02sm | |z | O | 20 | 014
PPos - 2
- _ 2
3 c::hes) (152588((5); ] ] (00..867':758) (%%%%) 143 | 346 | 0042
KABCO (-3.30176) (82122) (823;2) ] (83(3)2) 198.6 | 4053 | 1023
S KABC ('f'f:f) - ; (g:ig%‘) (8:;% 1057 | 217.4 | 0492
KAB 5.854 ] ] 0249 | 1309 | oo | oo | 0940
(20crashes) | (2.264) (0.285) | (1.486)
o 2 4
(2 crzéhes) (2:;2) i i (00'.13%82) (%%%%) 104 269 0.028

" Poisson distribution used; scale = square root of Deviance/DOF.
#Not significant at 90th percentile confidence interval.
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Table 3-15: Base Condition SPF Using Poisson Distribution, Two-Lane Three-Leg Stop-
Controlled (3ST) Intersections

Copyright National Academy of Sciences. All rights reserved.

Crash Type
Minnesota Severity bo b; b, bs Scale =2LL AIC MAD
(N = 141)
Same KA -13.794 0.984 0.412
direction (3 crashes) | (2.346) ) ) (0.274) (0) 141 34.2 0.042
KAB -13.383 1.017 0.487
Intersecting (6 crashes) | (1.976) ) i (0.230) (0) 22.5 43.0 0.078
direction KA -10.629 0.556 0.344
(2 crashes) | (2.255) | “ | 0272) | (0 102 | 245 | 0028
-11.716 | 0.746 0.455 0.826
Opposite KABCO | (1307) | (0.150) | (0.110) | ~ 0) /88 | 1636 | 0340
direction KA -12.867 0.8752 0.416
(3 crashes) | (2.323) ) ) (0.274) (0) 14.3 32.6 0.042
. . KA -7.513 0.1681% | 0.349
Single vehicle (2 crashes) | (2.221) - - (0.280) 0) 104 24.9 0.028
# Not significant at 90th percentile confidence interval.
27



http://www.nap.edu/26164

Table 3-16: Base Condition SPFs, Two-Lane Four-Leg Stop-Controlled (4ST) Intersections
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Crash Type
Minnesota Severity by b; b, bs k =2LL AIC MAD
(N =198)
-6.620 | 0.451 | 0.339 0.435
KABCO 0.805) | (0112) | (0.06) - (0.119) 3259 | 659.9 | 1.308
-8.747 0.825 | 0.929
. KABC (1.306) - - (0.168) | (0312) 200.8 | 407.7 | 0.730
-8.511 0.723 | 1.564
KAB (1.676) - - 0.217) | (0.630) 1465 | 299.1 | 0.527
-10.539 0.799 | 4.683
KA (3.235) - - (0.416) | (3.524) 55.6 117.2 | 0.156
-7.914 | 0364 | 0.399 0.000°
KABCO (1.294) | (0.184) | (0.101) - (0.001) 138.3 | 284.6 | 0.439
-7.538 0.429% | 0.000"
Same KABC (2.469) i i (0.320) | (0.000) 626 131.2 | 0172
direction KAB -4.284* -0.087* | 0.000"
(10 crashes) | (3.337) i i (0.448) | (0.002) 398 85.6 0.096
KA ] ] ] ] ] ] ] ]
(0 crash)
-10.362 | 0.475 | 0.722 0.415
KABCO | (1320) | (0.181) | (0.103) | = | (0.219) | 1°84 | 3248 | 0568
-12.896 1.248 | 2.906
KABC - - 1159 | 237.8 | 0.438
Intersecting (2.284) (0.292) | (1.094)
direction -12.779 1.175 | 2.178
KAB (2.425) - - (0.306) | (1.183) 89.1 184.2 | 0.297
-15.115 1.318 | 3.094
KA (4.079) i i (0.508) | (3.627) 38.3 82.6 0.101
-10.514 | 0.769 | 0.224 0.000°
KABCO | (1776) | (0.242) | (0125) | = | (0.000) | 2°8 | 2076 | 0303
-11.702 0.881 | 0.000°
oposic KABC (3.572) - - (0.450) | (0.002) 37.8 81.7 0.094
KAB -9.979* 0.506" | 0.000"
directi - - ) . .
rection | (3 crashes) | (6.251) (0.806) | (0.000) | >3 | 367 | 0030
KA o 0117+ | 84922
(2 crashes) 32.191 i i (57709) ) 0 i i
(4290) (0.000)
-5.533 0.415 | 0.256
KABCO (1.044) - - (0.136) | (0.203) 210.2 | 4265 | 0.688
-6.412 0.369% | 0.439
N KABC (1.838) - - 0.239) | (0.714) 101.0 | 208.0 | 0.310
& KAB -6.874 ] ] 0.355% | 0.000* 674 1208 | 0188
(21 crashes) | (2.337) (0.304) | (0.001) ) ’ )
KA -2.405* -0.508* | 0.000*
(3 crashes) | (6.079) i i (0.839) | (0.000) 153 367 0.030

*Poisson distribution used; scale = square root of Deviance/DOF.
#Not significant at 90th percentile confidence interval.
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Table 3-17: Base Condition SPFs Using Poisson Distribution, Two-Lane Four-Leg Stop-
Controlled (4ST) Intersections

Crash Type
Minnesota Severity bo b; b; bs Scale =2LL AIC MAD
(N =198)
-7.914 | 0364 | 0.399 0.895
KABCO | (1159 | (0.165) | (0.090) | = | (0.000) | 1383 | 2826 | 0.439
-7.538 0.429* | 0.667
Same KABC (1.647) i i (0.213) | (0.000) 62.6 1232 1 0172
direction KAB -4.284 -0.087% | 0.551
(10 crashes) | (1.841) ) ) (0.247) | (0.002) 39.8 83.6 0.096
KA -8.564 0.322* | 0.357
(3 crashes) | (2.203) i i (0.287) | (0.000) 154 349 0.030
-10.514 | 0.769 | 0.224 0.803
KABCO | (1428) | (0.194) | (0.101) | = | (0.000) | 2°8 | 20>6 | 0303
Opposite -11.702 0.881 0.535
direction KABC (1.905) ) ) (0.240) | (0.000) 37.8 797 0.094
KAB -9.979 0.506 | 0.355
(3 crashes) | (2.221) ) i (0.286) | (0.000) 153 347 0.030
KAB -6.874 0.355 | 0.688
single vehidle (21 crashes) | (1.609) ) ) (0.209) | (0.000) 67.4 1388 | 0.188
& KA -2.406" ] ] -0.508 | 0.355 153 347 0.030
(3 crashes) (2.160) (0.298) | (0.000) ’ ’ ’

#Not significant at 90th percentile confidence interval.

29

Copyright National Academy of Sciences. All rights reserved.



http://www.nap.edu/26164

Improved Prediction Models for Crash Types and Crash Severities

Table 3-18: Modified Base Condition SPFs, Two-Lane Four-Leg Signal-Controlled (45G)
Intersections

Crash Type
Ohio Severity bo b; b, bs k -2LL AIC MAD
(N = 202)
KABCO ('f_';9623) . . (gig) (ég;g) 3811 | 7683 | 2.248
e e e e | e | o
KAB (1218258? - - (%.2?1;) (cl)zzgg) 139.1 | 284.2 | 0.459
- #
(16 cI::shes) (5.59888) - - (()6.5'5;85) (;;32) 6.3 | 1186 | 0.147
KABCO '(12‘25833 - - (ézggg) (ézgig) 277.2 | 5605 | 1.324
e | e | S am e [P e |
direction KAB ‘(2271:()) - - ((1)..2?;2,) ((1):331) 680 | 1420 | 0.188
# N # *
( crlg;\hes) 8’%22) - - (g:ggg) (%.(())(())%) 194 1 448 | 0039
KABCO ('25"27397) - - (gzgig) ((2)::3?) 2204 | 4469 | 0.896
Intersecting KABC -(2122226)3 (gg;:) (gig;) i (égifli) 108.0 224.1 0.343
direction KAB (13073;;’)3 . . (giiii) &:g;z) 847 | 1755 | 0.248
- # *
(6 crgl;\hes) (1722;91()) - - (%)'.;233) (%.?)%%) 26.1 | 582 | 0.057
(15Kﬁ\rz§fes) (_29.;13:) - - (giig;) (%%%%) 2.5 | 11111 0135
N m # *
Opposite (5 frg[:ffes) (18%30701(; i i ((())%1261) (%(())(())(())) 229 °19 0.048
. e rr 2 -
drection (4c|::s?1es) (Ziggé) - - (()62562) ?6?(?102) 195 1 451 1 0039
- # *
Qahes | iy | | 0 | (e | ooy | 112 | 284 | 002
- #
(53KfrBa§ges) (25730215) ] ] (06.332053) (g:gcz)g) 128.6 | 2632 | 0423
_ # *
Single (lllf:éaBsches) (15.15?;)‘ - - (06.86712) (%%%01) 419 | 898 | 0102
. _ # *
veniee (8 clrsies) (1;.‘;;58? - - (tgiz) (%.(c))(c))g) 326 | 713 | 0075
- # *
(a crIZ/:hes) (1).79322? - - (111?357) (%%%?3) 187 | 435 | 0039

" Poisson distribution used; scale = square root of Deviance/DOF.
# Not significant at 90th percentile confidence interval.
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Table 3-19: Modified Base Condition SPFs Using Poisson Distribution, Two-Lane Four-Leg

Signal-Controlled (4SG) Intersections

Crash Type
Ohio Severity bo b, b, bs Scale =2LL AIC MAD
(N = 202)
# N #
diigg;n (a crzl;\hes) (%jszzzs) - - (82253) (giggé) 194 1 428 | 0033
'“Jﬁfifﬁ': ¢ (6 crzéhes) -(?.léi%()) - - (éég) (g:ggg) 261 | 562 1 0057
(15K?riif?es) -(12.193‘;%[)‘ - - (8232) (gigég) 2.5 1 1091 | 0135
Opposite (5 frilzfes) (;35?8()) ) ) (82;3) (83(2)(3)) 22.9 49.9 0.048
ppos : )
drection (@ cI::thes) (3.2:11) - - (0625822) (giggg) 195 1 431 ) 0039
- # #
2 criéhes) (;ﬁ;g) - - (Od.i?)i) (8:?)83) 112 1 264 | 0020
(11Kc¢aBsChes) (;1123? - - (3153@) (8:(5)(5)(;) 419 | 878 | 0102
Single vehicle (8 cI::sies) -(;43%56? - - (éggg) (gggg) 32.6 69.3 0.075
(@ crzi\hes) -(é?éggsi - - (cl):jg?) (g:ggg) 187 | 41> | 0033

# Not significant at 90th percentile confidence interval.

3.2.3 Validation of Models

The prediction models for all three types of intersections were validated in the same way as the segment
models. The 3ST and 4ST models were estimated using Minnesota data and validated using Ohio data,
while the 4SG models were estimated using Ohio data and validated using Minnesota data. The results
are presented in Table 3-20 through Table 3-22, in the same format as Table 3-5.

As for the segment models, the predicted results for intersections are reasonable. Again, the calibration
function generally performs slightly better than the calibration factor. Also, the calibration function fails
to converge for many of the crash categories that have very few or no crashes, most commonly categories
for KA crashes of various types. For the 3ST and 4ST models, the calibration factors are almost all less than
1.0, and the MAD and MSPE values are within reasonable ranges. Because the estimation and validation
data sources are reversed for the 45SG models, the calibration factors are all greater than 1.0, some
substantially so. It is noted that a total of only 136 crashes is in this dataset, and a small number of
intersections (202 estimation and 25 validation).
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Table 3-20: Calibration and Validation of Minnesota SPFs Using Ohio Data, Three-Leg Stop-Controlled (3ST) Intersections

Crash Observed HSM MAD | MsPE Calibration Factor (CF) (HSM) Calibration Function (Srinivasan et al. 2016)
Type Crashes Pred. CF* N Fitted | MAD MSPE a b k N Fitted MAD | MSPE
KABCO 736 | 2342.83 | 1.006 | 1.643 | 0.314 736 | 0514 | o725 | 2330 | 0832 ) 2168 733.442 | 0519 | 0.725
) ) ) ) ) ) (0.052) | (0.074) (0.238) ) ) )
0.306 0.819 1.842
KABC 288 825.61 | 0.415 | 0.301 | 0.349 288 | 0.234 0.191 (0.103) | (0.095) (0.413) 286.799 | 0.236 | 0.191
0.349 0.735 1.595
KAB 211 416.92 | 0.253 | 0.145 | 0.506 211 | 0.178 0.126 (0.173) | (0.102) (0.498) 210.762 | 0.180 | 0.126
0.559% 0.824 0.000#
KA 62 61.76 | 0.057 | 0.029 | 1.004 62 | 0.057 0.029 (0.680) | (0.198) (0.001) 62.053 | 0.057 | 0.029
SD 0.219 0.949 4.197
KABCO 135 586.58 | 0.291 | 0.239 | 0.230 135 | 0.116 0.118 (0.145) | (0.105) (1.095) 132,966 | 0.116 | 0.118
0.213 0.891 5.221
SD KABC 54 211.45 | 0.116 | 0.056 | 0.255 54 | 0.049 0.036 (0.301) | (0.139) (2.430) 53.532 | 0.049 | 0.036
1.449* 1.310 0.000#
SD KAB 31 54.66 | 0.040 | 0.018 | 0.567 31 | 0.029 0.018 (0.679) | (0.224) (0.505) 31.013 | 0.029 | 0.018
SD KA 9 16.94 | 0.012 | 0.004 | 0.531 9 | 0.009 0.004 Failed to Converge
ID 0.101 0.539 7.292
KABCO 76 420.62 | 0.218 | 0.121 | 0.181 76 | 0.069 0.050 (0.244) | (0.122) (2.673) 76.667 | 0.070 | 0.049
0.110 0.707 0.000%
ID KABC 33 158.80 | 0.088 | 0.028 | 0.208 33| 0.031 0.019 (0.444) | (0.176) (0.500) 33.138 | 0.031 | 0.019
ID KAB 24 33.57 | 0.027 | 0.012 | 0.715 24 | 0.023 0.012 Failed to Converge
ID KA 3 12.17 | 0.007 | 0.001 | 0.247 3 | 0.003 0.001 Failed to Converge
oD 0.154 0.812 1.584
KABCO 67 322.61 | 0.172 | 0.062 | 0.208 67 | 0.061 0.034 (0.295) | (0.160) (1.363) 66.867 | 0.061 | 0.034
oD 0.142 0.626 0.0035
KABC 39 100.26 | 0.064 | 0.022 | 0.389 39 | 0.036 0.019 (0.491) | (0.161) (1.008) 39.138 | 0.037 | 0.019
OD KAB 32 142.49 | 0.080 | 0.025 | 0.225 32 | 0.030 0.016 Failed to Converge
OD KA 15 17.42 | 0.015 | 0.007 | 0.861 15 | 0.014 0.007 Failed to Converge
SV 0.336 0.871 2.552
KABCO 403 | 1122.74 | 0.562 | 0.450 | 0.359 403 | 0.325 0.302 (0.105) | (0.143) (0.398) 404.057 | 0.326 | 0.302
1.257* 1.521 3.319
SV KABC 140 299.21 | 0.193 | 0.089 | 0.468 140 | 0.126 0.083 (0.786) | (0.411) (1.073) 140.070 | 0.126 | 0.083
5.611% 1.682 3.791
SV KAB 105 124.80 | 0.105 | 0.061 | 0.841 105 | 0.096 0.061 (1.562) | (0.561) (1.475) 106.050 | 0.096 | 0.061
SV KA 32 12.55 | 0.021 | 0.015 | 2.550 32 | 0.030 0.015 Failed to Converge

* CF = Calibration Factor; # Not significant at 90th percentile confidence interval.
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Table 3-21: Calibration and Validation of Minnesota SPFs Using Ohio Data, Four-Leg Stop-Controlled (4ST) Intersections

Crash Observed HSM MAD | MSPE Calibration Factor (HSM) Calibration Function (Srinivasan et al. 2016)
Type Crashes Pred. CF* N Fitted | MAD MSPE a b k N Fitted | MAD | MSPE
KABCO 0.277 0.739 5.357
201 806.693 | 1.169 | 2.162 | 0.249 201 0.503 0.905 (0.118) | (0.234) (0.915) 201.628 | 0.508 | 0.894
KABC 0.316 0.647 6.222
103 239.390 | 0.437 | 0.390 | 0.430 103 0.277 0.319 (0.324) | (0.267) (1.530) 104.274 | 0.279 | 0.315
KAB 0.356 0.613 5.231
84 131.173 | 0.285 | 0.252 | 0.640 84 0.228 0.242 (0.520) | (0.300) (1.525) 84.700 0.230 | 0.240
KA 0.236" | 0.607* 6.493
24 32.206 | 0.081 | 0.044 | 0.745 24 0.070 0.044 (1.293) | (0.420) (4.727) 24.015 0.070 | 0.044
SD 0.084 0.388 3.487
KABCO 30 205.831 | 0.330 | 0.258 | 0.146 30 0.087 0.055 (0.317) | (0.177) (2.767) 30.286 | 0.087 | 0.052
SD KABC 10.215% | 2.118 8.030%
12 31.880 | 0.064 | 0.022 | 0.376 12 0.036 0.021 (3.544) | (1.204) (9.483) 12.204 0.036 | 0.021
SD KAB 6 54.202 | 0.089 | 0.014 | 0.111 6 0.018 0.009 Failed to converge
SD KA 0 Model is not significant Failed to converge
ID 0.221 0.522 16.108
KABCO 91 351.659 | 0.590 | 0.868 | 0.259 91 0.253 0.471 (0.307) | (0.251) (3.810) 91.802 0.259 | 0.458
ID KABC 0.155 0.249% 14.789
63 127.534 | 0.265 | 0.272 | 0.494 63 0.179 0.241 (0.537) | (0.254) (4.247) 63.502 0.180 | 0.234
ID KAB 0.129 0.191% 10.052
54 77.719 | 0.186 | 0.204 | 0.695 54 0.154 0.198 (0.691) | (0.271) (4.443) 53.848 0.154 | 0.193
ID KA 0.093 0.362% 9.086
17 24986 | 0.061 | 0.032 | 0.680 17 0.050 0.031 (1.094) | (0.306) (7.736) 17.119 0.050 | 0.031
oD 0.055 0.678" 0.000%
KABCO 9 90.192 | 0.145 | 0.036 | 0.100 9 0.027 0.013 (1.015) | (0.503) (0.000) 8.967 0.027 | 0.013
oD 0.067% | 0.761* 0.000%
KABC 3 19.784 | 0.034 | 0.005 | 0.152 3 0.009 0.005 (3.357) | (0.970) (0.000) 2.965 0.009 | 0.005
OD KAB 3 5.167 0.012 | 0.005 | 0.581 3 0.009 0.005 Failed to converge
OD KA 2 Model is not significant Failed to converge
SV 0.170 0.634# 3.252
KABCO 54 211.523 | 0.356 | 0.166 | 0.255 54 0.152 0.102 (0.621) | (0.526) (1.642) 54.027 0.152 | 0.102
SV KABC 0.259% 1.021% 5.015%
15 60.695 | 0.110 | 0.030 | 0.247 15 0.044 0.025 (2.488) | (1.047) (6.305) 14.962 0.044 | 0.025
SV KAB 1.125% 1.345"% 5.742%
14 34.180 | 0.071 | 0.025 | 0.410 14 0.041 0.024 (3.368) | (1.149) (7.100) 14.042 0.041 | 0.024
SV KA 4 Model is not significant Failed to converge

* CF = Calibration Factor; # Not significant at 90th percentile confidence interval.
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Table 3-22: Calibration and Validation of OH SPFs using MN Data (4SG)

Crash Observed HSM MAD MSPE Calibration Factor (HSM) Calibration Function (Srinivasan et al. 2016)
Type Crashes Pred. CF N Fitted MAD MSPE a b k N Fitted MAD MSPE
KABCO 5.746 0.376 0.087
136 26.288 | 4.468 | 28.48 | 5.174 136 2.384 9.039 (0.105) | (0.117) (0.084) 135.561 | 2.189 | 7.967
KABC 4.162 0.730% 0.355
34 5.480 1.247 | 3.994 | 6.204 34 0.945 2.464 (0.778) | (0.497) (0.297) 33.799 | 0.980 | 2.509
KAB 1.287* 0.520% 2.004
11 3.491 0.489 | 0.891 | 3.151 11 0.594 0.690 (0.917) | (0.407) (2.006) 10.550 | 0.631 | 0.781
KA 1 1.164 0.082 | 0.038 | 0.859 1 0.076 0.038 Failed to converge
SD 4.223 0.310 0.156
KABCO 68 9.944 2.401 | 9.933 | 6.838 68 1.897 5.751 (0.195) | (0.103) (0.169) 67.746 | 1.578 | 3.780
SD KABC 12 1.407 0.498 | 1.038 | 8.532 12 0.634 0.678 Failed to converge
SD KAB 1 1.019 0.069 | 0.031 | 0.981 1 0.068 0.031 Failed to converge
SD KA 0 Model not significant Failed to converge
ID KABCO 1.253* 0.052# 0.000
33 10.678 | 1.160 | 2.093 | 3.090 33 1.108 1.608 (0.361) | (0.318) (0.004) 29.783 | 0.988 | 1.278
ID KABC 9 1.073 0.377 | 0.415 | 8.384 9 0.505 0.352 Failed to converge
ID KAB 3 1.780 0.171 | 0.108 | 1.685 3 0.207 0.107 Failed to converge
ID KA 0 Model not significant Failed to converge
oD 2.082 0.644 0.426
KABCO 21 0.899 0.830 | 1.493 | 3.161 21 0.829 1.018 (0.502) | (0.336) (0.604) 20.746 | 0.860 | 1.072
OD KABC 9 Model not significant Failed to converge
OD KAB 4 Model not significant Failed to converge
OD KA 1 Model not significant Failed to converge
sV 6.612% 1.505* 0.013
KABCO 14 4,723 0.574 | 0.754 | 2.964 14 0.601 0.580 (1.529) | (0.960) (0.512) 14.005 | 0.575 | 0.564
SV KABC 4 0.650 0.178 | 0.228 | 6.151 4 0.271 0.200 Failed to converge
SV KAB 3 0.415 0.131 | 0.192 | 7.228 3 0.202 0.162 Failed to converge
SV KA 0 Model not significant Failed to converge

* CF = Calibration Factor; # Not significant at 90th percentile confidence interval.
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4 MODELS FOR MULTILANE RURAL HIGHWAYS

4.1 ROADWAY SEGMENTS

4.1.1 Estimation and Validation Data

The data we used for estimation of segment SPFs were collected from Texas (2009-11) and California
(2010-11), for rural undivided multilane highway segments and rural divided multilane highway
segments, respectively. Since not all the base conditions in the HSM were available, we slightly modified
the base conditions and conducted tests to check whether the modified factors were statistically
significant in the SPFs. Data used for validation were from Texas (2012) for undivided segments and lllinois
(2009-10) and also Washington State (2009-11) for divided segments. Although data were available from
North Carolina and Ohio for undivided segments, the samples were limited for SPF development and
validation. For divided segments, we used the California data for SPF development because the range of
AADTSs in California is larger than in lllinois and Washington.

4.1.1.1 Undivided Segments
Not all the base conditions in the current HSM are available in both training (Table 4-1) and validation
data. Also, some base conditions are rare in the dataset, such as segments with six-foot shoulder widths.

Table 4-1: HSM Base Conditions and Data Availability, Four-Lane Undivided (4U) Segments

Base Condition HSM Criteria Texas
Lane width 12 feet YES
Shoulder width 6 feet YES
Shoulder type Paved YES
Side slopes 1V:7H or flatter NO
Lighting None NO
Automated speed enforcement None YES

In the training data, only 48 divided segments have twelve-foot lanes, six-foot paved shoulders, and no
automated speed enforcement. Since estimating all crash types with 48 segments was not possible, we
slightly modified the base conditions, changing the shoulder width in the base condition definition from
“six feet” to “six feet or wider.” This increased the sample size in the training dataset from 48 to 401, as
shown in Table 4-2. Table 4-3 and Table 4 4 present descriptive statistics for, respectively, base condition
SPFs and validation data for undivided segments.
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Table 4-2: Sample Size by Conditions, Four-Lane Undivided (4U) Segments

. Lane Shoulder Shoulder Auto-speed
Condition . . Texas
width width type enforcement
Base condition 12.ft. 6.ft. paved not present 48
Modified condition 12.ft. 6.ft. or wider paved not present 401

Table 4-3: Descriptive Statistics for Base Condition SPFs, Four-Lane Undivided (4U) Segments

Copyright National Academy of Sciences. All rights reserved.

Texas No. of
(N =401, Crashes Mean S.D. Min Max
176.925 mi)
Segment length (ft) - 0.441 0.626 0.1 5.226
AADT (veh/day) - 7,193 5,108 250 21,667
Lane width (ft) - 12 0 12 12
Shoulder width (ft) - 8.688 1.812 6 17
KABCO 738 1.840 4.952 0 61
KABC 288 0.718 1.920 0 20
KAB 158 0.394 1.111 0 12
KA 56 0.140 0.510 0 5
SD KABCO 287 0.716 2.652 0 35
SD KABC 102 0.254 0.875 0 9
SD KAB 43 0.107 0.419 0 3
SD KA 9 0.022 0.179 0 2
ID KABCO 147 0.367 1.184 0 11
ID KABC 58 0.145 0.569 0 6
ID KAB 32 0.080 0.344 0 3
ID KA 9 0.022 0.179 0 2
OD KABCO 83 0.207 0.889 0 12
OD KABC 40 0.100 0.447 0 5
OD KAB 29 0.072 0.342 0 4
OD KA 22 0.055 0.286 0 3
SV KABCO 192 0.479 1.315 0 15
SV KABC 78 0.195 0.646 0 9
SV KAB 50 0.125 0.529 0 8
SV KA 16 0.040 0.220 0 2
36
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Table 4-4: Descriptive Statistics for Base Condition Validation Data, Four-Lane Undivided (4U)

Segments
Texas No. of .

(N = 402, 170.531 mi) Crashes Mean S.D. Min Max
Segment length (ft) - 0.424 0.596 0.100 5.226
AADT (veh/day) - 7,022 4,844 90 23,000
Lane width (ft) - 12 0 12 12
Shoulder width (ft) - 8.662 1.814 6 17
KABCO 195 0.485 1.399 0 18
KABC 66 0.164 0.581 0 7
KAB 38 0.095 0.362 0 4
KA 14 0.035 0.184 0 1
SD KABCO 78 0.194 0.739 0 10
SD KABC 24 0.06 0.285 0 3
SD KAB 11 0.027 0.178 0 2
SD KA 3 0.007 0.086 0 1
ID KABCO 30 0.075 0.345 0 4
ID KABC 3 0.007 0.086 0 1
ID KAB 3 0.007 0.086 0 1
ID KA 0 0 0 0 0
OD KABCO 15 0.037 0.266 0 4
OD KABC 11 0.027 0.191 0 2
OD KAB 7 0.017 0.131 0 1
OD KA 3 0.007 0.086 0 1
SV KABCO 72 0.179 0.614 0 7
SV KABC 28 0.07 0.339 0 4
SV KAB 17 0.042 0.236 0 3
SV KA 8 0.02 0.14 0 1

4.1.1.2 Divided Segments

Similarly, in the base condition SPFs for divided roadway segments, some base conditions in the current
HSM are not available for California, which is the state used for SPF development (see Table 4-5).

Table 4-5: HSM Base Conditions and Data Availability, Four-Lane Divided (4D) Segments

Base Condition HSM Criteria California
Lane width 12 ft X
Right shoulder width 8 ft X
Median width 30 ft X
Lighting none

Automated speed enforcement none X

Moreover, some base conditions occur infrequently in the dataset, such as segments with median widths
of 30 feet (0.88 percent). To increase the sample size, we changed the median width in the base condition
from “30 feet” to “30 feet or wider.” This increased the sample size in the dataset from 0 to 138, as shown
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in Table 4 6. Table 4-7 shows descriptive statistics for base condition SPFs for divided segments. Also,
descriptive statistics produced from the validation data for the divided segments are presented in Table
4-8 and Table 4-9. We chose California’s data for SPF estimation because California has the largest range
of AADTs, as shown in Table 4-7; lllinois and Washington data were chosen for validation.

Table 4-6: Sample Size by Condition, Four-Lane Divided (4D) Segments

L Should Auto-Speed
Condition a.ne o-u er Median Width tta-Spee California
Width Width Enforcement
Base condition 12 feet 8 feet 30 feet Not present 0
Modified condition 12 feet 8 feet 30 feet or wider Not present 138

Table 4-7: Descriptive Statistics for Base Condition SPFs, Four-Lane Divided (4D) Segments

California No. of .

(N = 138, 73.366 mi) Crashes Mean 5-D. Min Max
Segment length (mi) - 0.532 0.585 0.104 3.65
AADT (veh/day) - 16,212 10,083 2,325 66,504
Lane width (ft) - 12 0 12 12
Shoulder width (ft) - 9.123 0.734 8 11
Median width (ft) - 68.384 18.904 30 99
KABCO 263 1.906 4,159 0 30
KABC 93 0.674 1.476 0 11
KAB a7 0.341 0.759 0 5
KA 9 0.065 0.248 0 1
SD KABCO 115 0.833 2.536 0 22
SD KABC 30 0.217 0.835 0 7
SD KAB 10 0.072 0.334 0 2
SD KA 0 0 0 0 0
ID KABCO 1 0.007 0.085 0 1
ID KABC 0 0 0 0 0
ID KAB 0 0 0 0 0
ID KA 0 0 0 0 0
OD KABCO 7 0.051 0.251 0 2
OD KABC 5 0.036 0.223 0 2
OD KAB 3 0.022 0.146 0 1
OD KA 3 0.022 0.146 0 1
SV KABCO 136 0.986 2.007 0 19
SV KABC 57 0.413 0.843 0 6
SV KAB 33 0.239 0.561 0 3
SV KA 6 0.043 0.205 0 1
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Table 4-8: Descriptive Statistics for Base Condition Validation Data, Four-Lane Divided (4D)
Segments - lllinois

lllinois No. of .

(N =592, 145.500 mi) Crashes Mean S.D. Min Max
Segment length (mi) - 0.246 0.162 0.100 1.410
AADT (veh/day) - 8,198 4,376 1,050 27,750
Lane width (ft) - 12 0 12 12
Shoulder width (ft) - 10.856 1.239 8 14
Median width (ft) - 48.785 11.105 30 88
KABCO 170 0.287 0.675 0 6
KABC 70 0.118 0.376 0 3
KAB 59 0.1 0.342 0 3
KA 21 0.035 0.185 0 1
SD KABCO 47 0.079 0.317 0 3
SD KABC 20 0.034 0.199 0 2
SD KAB 18 0.03 0.191 0 2
SD KA 8 0.014 0.116 0 1
ID KABCO 0 0 0 0 0
ID KABC 0 0 0 0 0
ID KAB 0 0 0 0 0
ID KA 0 0 0 0 0
OD KABCO 5 0.008 0.092 0 1
OD KABC 4 0.007 0.082 0 1
OD KAB 4 0.007 0.082 0 1
OD KA 2 0.003 0.058 0 1
SV KABCO 116 0.196 0.513 0 4
SV KABC 44 0.074 0.299 0 2
SV KAB 37 0.063 0.262 0 2
SV KA 11 0.019 0.135 0 1
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Table 4-9: Descriptive Statistics for Base Condition Validation Data, Four-Lane Divided (4D)
Segments - Washington

Washington No. of .

(N =214, 95727 mi) Crashes Mean S.D. Min Max
Segment length (mi) - 0.429 0.439 0.103 2.373
AADT (veh/day) - 15,660 8221 3947 42,310
Lane width (ft) - 12 0 12 12
Shoulder width (ft) - 9.853 0.525 8 10.5
Median width (ft) - 59.051 22.833 35 180
KABCO 721 3.369 4,159 0 24
KABC 179 0.836 1.288 0 7
KAB 116 0.542 0.991 0 6
KA 21 0.098 0.342 0 2
SD KABCO 131 0.612 1.212 0 7
SD KABC 36 0.168 0.454 0 2
SD KAB 20 0.093 0.337 0 2
SD KA 3 0.014 0.118 0 1
ID KABCO 20 0.093 0.4 0 3
ID KABC 11 0.051 0.278 0 2
ID KAB 9 0.042 0.262 0 2
ID KA 2 0.009 0.096 0 1
OD KABCO 8 0.037 0.234 0 2
OD KABC 4 0.019 0.136 0 1
OD KAB 2 0.009 0.096 0 1
OD KA 1 0.005 0.068 0 1
SV KABCO 554 2.589 3.329 0 22
SV KABC 126 0.589 0.983 0 6
SV KAB 84 0.393 0.76 0 5
SV KA 15 0.07 0.306 0 2

4.1.2 Estimated Models

Base condition SPFs for undivided segments are displayed in Table 4-10. The coefficients of the traffic
volumes range from 0.518 to 1.711, indicating that the relationship between crash occurrences and traffic
volume is not necessarily linear. Note that for same-direction, intersecting-direction, and single-vehicle
KA crashes, the volume coefficients of the corresponding SPF are not statistically significant at a
confidence interval of 90 percent. Such SPFs should be used with care. Also, for the SPF of same-direction
KAB crashes, the standard error of the overdispersion parameter function, ¢, is not estimated. Thus, this
SPF should also be used with care. Furthermore, the MADs are reasonably small.

Base condition SPFs for divided segments are displayed in Table 4-11. The lowest and highest traffic
volume coefficients are —0.176 and 1.730, respectively. They indicate the nonlinear relationship between
crashes and traffic volume. The coefficients of the intersecting-direction KABCO crash SPF are all
statistically insignificant at all levels of significance because of their extremely large standard errors. Thus,
it is not recommended to apply the SPF for practical purposes without care. The SPFs of the remaining
crash categories of intersecting-direction crashes and same-direction KA crashes cannot be estimated
because there are no observed crashes to model. Finally, the SPF MADs are small.
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Table 4-10: Base Condition SPFs, Four-Lane Undivided (4U) Segments

Crash Type
Texas Severity by b; c -2LL AIC MAD
(N = 401, 176.925 mi)
-9.129 1.055 0.476 1,205.
KABCO (1.001) (0.112) (0.130) 1,199.4 4 1.677
-9.6520 1.0088 0.611
o KABC (1.2192) (0.1350) (0.221) 7316 | 737.6 | 0.711
-9.704 0.950 0.783
KAB (1.447) (0.160) (0.350) 509.7 | 515.7 | 0.453
-9.799 0.847 -0.2157%
KA (2.335) (0.259) (0.5427) 256.1 | 262.1| 0.199
-13.541 1.431 0.0327%
KABCO (L616) 0.178) (0.183) 709.0 | 715.0 | 0.813
-16.6504 1.654 0.365"
e direction KABC (2.2606) (0.245) (0.365) 374.7 380.7 0.313
KAB -15.173 1.404 11.832¢% 229.2 235.2 0163
(2.711) (0.292) (.) ’ ) ’
-12.032 0.895" -1.983
KA (6.410) 0.713) (1.101) 65.6 | 716 | 0.042
-10.209 1.000 -0.825
KABCO (2.145) (0.241) 0.211) 546.1 | 552.1 | 0.559
-10.944 0.978 -1.199
Intersecting direction e (2.913) (0.325) (0.331) gl el s
& KAB -11.340 0.955 -0.764% 1972 203.2 0135
(3.227) (0.356) (0.567) ) ) )
-10.025 0.671*% -2.249
KA (5.702) (0.637) (0.921) 76.6 | 82.6| 0.043
-15.344 1.495 -0.923
KABCO (2.912) (0.321) (0.304) 307.6 | 313.6 | 0.290
-16.518 1.540 0.365"
e KABC (3.174) (0.343) (0.824) 190.0 | 196.0 | 0.147
PP (Ag -18.421 1.711 13.203" 427 | 1487 | 0108
(3.572) (0.382) | (224.650) ' : '
-16.573 1.482 0.885"
KA (3.998) (0.431) (2.254) 124.0 130.0 0.089
-7.127 0.688 1.018
KABCO (1.196) (0.133) (0.379) 598.3 | 604.3 | 0.532
-6.738 0.545 13.202*
e venide KABC (1.558) 0173) | (121.940) 3255 | 331.5| 0.253
-6.941 0.518 0.476"
KAB (2.044) (0.228) (0.879) 243.1 | 249.1| 0.184
-6.931 0.390" -0.255%
KA (3.378) (0.379) (L421) 1132 | 119.2 | 0.071

*Moore-Penrose inverse matrix used.
# Not significant at 90th percentile confidence interval.
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Table 4-11: Base Condition SPFs, Four-Lane Divided (4D) Segments

Crash Type
California Severity by b; c -2LL AIC MAD
(N =138, 73.366 mi)
-9.644 1.050 0.669
KABCO (1.519) (0.156) (0.296) 441.2 447.2 1.384
-10.817 1.064 1.023
o KABC (1.99) (0.203) (0.851) 249.2 | 2552 | 0.641
-10.69 0.983 2.090
KAB (2.456) (0.248) (3.255) 173.6 | 179.6 | 0.402
-7.690 0.508 11.238
KA (5.401) | (0.554) | (289.120) | >72| 32| 0108
-14.701 1.479 -0.473
KABCO (2.920) (0.299) (0.210) 282.9 288.9 0.957
-18.512 1.730 -1.620
. . KABC (6.115) (0.625) (0.521) 121.8 127.8 0.351
Same direction 14.914 1.261 2.190
KAB (9.572) (0.983) (0.883) 61.3 67.3 0.130
KA 0 Observed Crashes: Failed to Converge
-192.600% 17.207% 9.094#
KABCO (1360.500) | (122.530) | (316.050) 2.200 82 0001
KABC 0 Observed Crashes: Failed to Converge
Intersecting direction
KAB 0 Observed Crashes: Failed to Converge
KA 0 Observed Crashes: Failed to Converge
-17.478 1.470 9.638"
KABCO (5.829) (0.575) (438.060) 36.7 42.7 | 0.074
-17.132 1.403 1.553"
. KABC (7.421) (0.707) (42.172) 29.8 35.8 | 0.054
PP CAB -20.211 1.656 9.871* 00| 260 o031
(8.927) (0.874) (396.870) : : :
-20.211 1.656 9.871%
KA (8.927) | (0.874) | (396.870) | 200 | 260} 0031
-7.990 0.816 1.262
KABCO (1.580) (0.161) (0.715) 3294 335.4 0.863
-9.473 0.879 10.025%
. KABC (2.093) (0.212) (586.580) 1916 | 197.6 | 0.424
& KAB -10.952 0.973 1.422% 1442 1502 0.317
(2.925) (0.296) (2.264) ) ) )
-1.524 -0.176 9.978%
KA (6.838) | (0.719) | (913.790) | &1 | 21| 0081

*Moore-Penrose inverse matrix used.
#Not significant at 90th percentile confidence interval.
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4.1.3 Validation of Models

Calibration and validation of the SPFs of rural multilane undivided and divided segments are presented in
Table 4-12 through Table 4-14. The Texas 2012 data are used for calibration and validation of undivided
segment SPFs and the lllinois and Washington data for divided segment SPFs. The calibration factors
obtained using the HSM method are less than 1, except for SV SPFs. Use of the calibration function
(Srinivasan et al. 2016) improves model fit better than the HSM calibration technique in some cases, as
indicated by the MADs and MSPEs. Due to the lack of samples, the same-direction KA, intersecting-
direction KAB, intersecting-direction KA, and opposite-direction KA crash SPFs cannot be calibrated using
the calibration function.
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Table 4-12: Calibration of the Texas (2009-11) Safety Performance Functions Using the Texas (2012) Data, Multilane Undivided
Segments Base Conditions

Crash Observed | HSM MAD MSPE Callbratl:ln Factor (HSM) Calibration Function (Srlnlvas?\ln et al. 2016)
o
Type Crashes Pred. CF Fitted MAD | MSPE a b k Fitted MAD | MSPE
0.825 0.838 1.074
KABCO 195 | 233.28 | 0.583 1.371 0.836 195 0.542 | 1.320 (0.089) | (0.084) (0.289) 188.96 | 0.554 | 1.362
0.670 0.936 0.437*
KABC 66 | 90.49 | 0.249 0.201 0.729 66 0.215 | 0.206 (0.120) | (0.118) (0.392) 63.76 | 0.217 | 0.217
0.741 0.988 | 8.95x107#
KAB 38 | 50.04 | 0.154 0.086 0.759 38 0.140 | 0.088 (0.183) | (0.137) (0.013) 37.71 | 0.140 | 0.089
0.447 0.781 o*
KA 14 | 17.90 | 0.069 0.032 0.782 14 0.061 | 0.031 (0.116) | (0.224) (0.007) 14.00 | 0.063 | 0.031
SD 0.751 0.839 1.853
KABCO 78 | 89.80 | 0.290 0.452 0.869 78 0.274 | 0.443 (0.161) | (0.118) (0.721) 75.81 | 0.278 | 0.442
0.776 1.021 0.047*
SD KABC 24 | 31.89 | 0.105 0.061 0.753 24 0.092 | 0.061 (0.265) | (0.172) (0.525) 23.95 | 0.092 | 0.061
1.065% 1.117 0.058"
SD KAB 11| 13.71| 0.054 0.028 0.803 11 0.048 | 0.028 (0.720) | (0.259) (1.125) 11.00 | 0.048 | 0.028
SD KA 3 2.96 | 0.015 0.007 1.015 3 0.015 | 0.007 Failed to Converge
ID 0.396 0.710 3.074
KABCO 30 | 48.02 | 0.170 0.135 0.625 30 0.134 | 0.118 (0.172) | (0.183) (1.880) 30.08 | 0.136 | 0.113
0.056 0.596 0
ID KABC 18.78 | 0.053 0.014 0.160 3 0.015 | 0.007 (0.079) | (0.268) 0) 3.00 | 0.015 | 0.007
ID KAB 3] 10.25| 0.032 0.009 0.293 3 0.015 | 0.007 Failed to Converge
ID KA 0 2.90 | 0.007 1.834x10* 0 0 0 0 Failed to Converge
oD 0.173* 0.495 10.690"
KABCO 15| 26.73 | 0.086 0.067 0.561 15 0.065 | 0.064 (0.117) | (0.208) (7.997) 14.14 | 0.068 | 0.068
oD 0.238* 0.570 5.241%
KABC 11| 12.63 | 0.052 0.032 0.871 11 0.049 | 0.032 (0.202) | (0.233) (6.143) 10.40 | 0.050 | 0.035
0.215* 0.596 o*
OD KAB 9.18 | 0.036 0.016 0.763 7 0.032 | 0.016 (0.213) | (0.266) (0.004) 7.00 | 0.033 | 0.016
0D KA 6.98 | 0.025 0.009 0.430 0.015 | 0.008 Failed to Converge
sV 1.153 0.997 1.299
KABCO 72 | 6133 | 0.247 0.273 1.174 72 0.259 | 0.266 (0.301) | (0.136) (0.646) 70.98 | 0.258 | 0.266
1.180 1.035 1.526"
SV KABC 28 | 25.01 | 0.110 0.094 1.119 28 0.115 | 0.093 (0.593) | (0.192) (1.355) 27.40 | 0.113 | 0.093
1.231% 1.062 0.386"
SV KAB 17 | 15.98 | 0.073 0.047 1.064 17 0.075 | 0.047 (0.789) | (0.227) (1.085) 16.76 | 0.074 | 0.046
2.672 1.146 0
SV KA 8 5.12 | 0.031 0.018 1.561 8 0.036 | 0.018 (1.550) | (0.314) (0.014) 8.00 | 0.036 | 0.018

*CF = Calibration Factor,

; # Not significant at 90th percentile confidence interval. *Moore-Penrose inverse matrix used.
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Table 4-13: Calibration of the California (2009-10) Safety Performance Functions Using the lllinois (2009-11) Data, Multilane
Divided Segments Base Conditions

Calibration Factor (HSM) Calibration Function (Srinivasan et al. 2016)
Crash Observed HSM MAD MSPE N N
+
Type Crashes Pred. CF Fitted MAD | MSPE a b k Fitted MAD | MSPE
KABCO 170 | 233.745 | 0463 | 0.406 | 0.727 | 170 | 0.413 | 0.390 (8'132) (é'gg% (82:712) 169.46 | 0.411 | 0.390
#
KABC 70| 82320 0213 | 0.130| 0.850 70 | 0.199 | 0.130 (g'zgg) (8'232) (00'6529‘;) 69.615 | 0.199 | 0.130
#
KAB 59| 44393 | 0153 | 0.109 | 1.329 59 | 0.171 | 0.107 (é'ggg) ((1)'(1)33) %352%) 58.761 | 0.169 | 0.106
2.295% | 1.085 4.379
KA 21| 12280 | 0.054 | 0.034| 1.710 21| 0067 | 0.033| 5200 | G2 x1076# 20.589 | 0.066 | 0.033
: : (0.058)
D 0904 | 1.233 0.569"
ABEO 47| 75301 | 0.170 | 0.091 | 0.624 47| 0136 | 0089 [ 030 | (133 Osen) 46.748 | 0.132 | 0.088
0.999" | 0.951 1.535"
SD KABC 20| 16978 | 0.058 | 0.038 | 1.178 20 | 0.063 | 0.037 (0562) | (0.260 (2.066) 19.739 | 0.063 | 0.037
SD KAB 18| 8248 | 0043 | 0.035| 2.182 18 | 0.057 | 0.034 (%333&” (é'ggi) (12'%%‘;) 17.682 | 0.056 | 0.034
SD KA 8 Failed to Converge Failed to Converge Failed to Converge
ID KABCO 0 Unable to calibrate Unable to calibrate Failed to Converge
ID KABC 0 Failed to Converge Failed to Converge Failed to Converge
ID KAB 0 Failed to Converge Failed to Converge Failed to Converge
ID KA 0 Failed to Converge Failed to Converge Failed to Converge
oD 26.667" 1.729° 3.84x1053" «| 0.016 | 0.008
o 5| 4344 | 0015 | 0.008| 1.151 5| 0016 | 0008 [ 22500 | 506y o) 5.000 > 3
3 * g
0D KABC 4| 3208 0012| o0007] 1.213 4| 0.013 | 0.007 (%'%13) (%%9691) 5'06%’)‘10 3.345° | 0012 | 0.007
3 E3 3%
0D KAB 4| 1569 | 0.009| 0.007] 2550 4| 0.013 | 0.006 (3%3381) (20'3;2320) 1'3(306‘018) 4.000" | 9012 | 0.006
10.039" 1.420° 4.426x107 . | 0.006 | 0.003
OD KA 2| 1569 | 0.006 | 0.003| 1.275 2| 0007 | 0.003| (0708) | (G151) 0 1.658 > 3
v 0795 | 0991 1.087
o 116 | 145.206 | 0.337 | 0252 0.799 | 116 | 0.308 | 0246 [ (700 | (oen 0aa0) 116.61 | 0.309 | 0.246
0463 | 0772 2.306"
SV KABC 44| 58380 | 0.156 | 0.089 | 0.754 44 | 0.136 | 0.087 (0270) | (0228 (og) 44.003 | 0.137 | 0.087
SV KAB 37| 31385 0.107 | 0.067 | 1.179 37 | 0.115 | 0.067 (%ii%) (8%%) &'ggé) 37.002 | 0.116 | 0.067
0516° | 0.874° | 9.000x107" . 10036 | 0.018
SV KA 11| 13.494 | 0040 | 0.018 | 0.815 11| 0036 | 0018 o0 | 48R O 11.00 > 3

*CF = Calibration Factor; * Not significant at 90th percentile confidence interval. *Moore-Penrose inverse matrix used.
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Table 4-14: Calibration of the California (2009-10) Safety Performance Functions Using the Washington (2009-11) Data, Multilane

Divided Segments Base Conditions

Calibration Factor (HSM, 2010) Calibration Function (Srinivasan et al. 2016)
Crash Observed HSM MAD MSPE N
Type Crashes Pred. CF* Fitted MAD | MSPE a b k N Fitted | MAD | MSPE
KABCO 721 | 437.481 | 2.001 | 10.098 1648 | 721| 1.978| 8.385 (é'?gg) (8'322) (8'823) 723.568 | 1.942 | 7.708
KABC 179 | 155.458 | 0728 | 1.165 1151 | 179 | 0.754 | 1.198 (3'18%) (8'385) (8?‘7‘2) 178321 | 0.762 | 1.133
KAB 116 | 79.609 | 0.504 | 0.753 1457 | 116 | 0.553 | 0.726 ((1)'%(3)) (g'fﬁ) (8"2‘%) 115.680 | 0.554 | 0.715
KA 21| 16234 | 0150 | 0.108 1.294 21| 0.165 | 0.108 ((1)'32;) ((1)"2);3) (g'ggg) 21.163 | 0.164 | 0.108
D 0741 | 0.890 0.630
CABEO 131 | 184.025 | 0.728 | 1.288 0712 | 131 | 0629 | 1061 | 00e5 | 0313) | (09ey | 131193 | 0.633 | 1044
SD 0.700 | 0935 | 5.300x107
oc 36| 48355 | 0255 | 0.172 0.744 36 | 0226 | 0161 3700 | 3% | > o099 35.943 | 0.230 | 0.161
-7
SD KAB 20| 17.619 | 0139 | 0.093 1.135 20| 0.145 | 0.091 &'gg% (éégg) Zi(l)55‘017°) 20.000 | 0.138 | 0.089
SD KA 3 Failed to Converge Failed to Converge Failed to Converge
D 3.883 0.144" | 0.0157 8.037
(ABCO 20 33531 0.093| 0.168 | 51506.57 20| 0187 | 0736 | O1ct | (0050) | (500%) 20033 | 0.175 | 0.159
K}\%C 11 Failed to Converge Failed to Converge Failed to Converge
ID KAB 9 Failed to Converge Failed to Converge Failed to Converge
ID KA 2 Failed to Converge Failed to Converge Failed to Converge
oD 0.300° | 06477 | 12.5997
O 8| 10563 | 0.081| 0.056 0.757 8| 0071 | 00s5| 90 | B5%5) | (14 8.035 | 0.071 | 0.054
oD 0.394" | 0.902" | 1.530x10°
ane 4| 7.693| 0051| 0.019 0.520 4| 0036 | 00| 505 | 176 | logio) 4.000 | 0.036 | 0.018
OD KAB 2| 4272 0028 | 0.009 0.468 2| 0.018 | 0.009 (%";385) (%'923775) 0 2.001° | 0018 | 0.009
1.069° 1.488" 4x10°7 « | 0.009 | 0.005
OD KA 1| 4272| 0.024| 0005 0.234 1| 0009 | oo0s [ L0 | i 0 1.000 ) >
SV 2502 | 0.902 0.351
oo 554 | 234.130 | 1.838 | 8.985 2366 | 554 | 1608 | 5539 | 200 | 0000 | (oeas) | 558213 | 1562 | 5.324
sV 1.146 | 0.739 0.339
KABC 126 | 98.006 | 0.566 | 0.796 1286 | 126 | 0601 | 0821| (192 | (0708) | (0o03) | 126:156 | 0611 | 0764
1.227 | 0.790 0.264"
SV KAB 84| 55951 | 0397 | 0.494 1.501 84| 0440 | 0.492 0229) | (©0128) | (0230) 84.167 | 0.448 | 0.472
1.662 1.085 2.784
SV KA 15| 11.346 | 0.111 | 0.089 1.322 15| 0124 | ooss| %% | 92| SR 15.225 | 0.124 | 0.088

*CF = Calibration Factor; * Not significant at 90th percentile confidence interval. “*Moore-Penrose inverse matrix used.
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4.2 INTERSECTIONS

4.2.1 Estimation and Validation Data

The data used for estimation of intersection SPFs were collected from Minnesota (2009-11) and Ohio
(2009-11) for rural multilane stop-controlled intersections and rural multilane four-leg signal-controlled
intersections, respectively. Since not all the base conditions in the HSM were available, we slightly
modified the base conditions and conducted tests to check whether the modified factors were statistically
significant in the SPFs. For validation, the Ohio data are used for stop-controlled intersections and the
Minnesota data for four-leg signal-controlled intersections. For both types of stop-controlled
intersections, the sample sizes in the Minnesota data are larger than those in the Ohio data, which
prompted us to use the Minnesota data for SPF development, and thus, the Ohio data for validation. For
four-leg signal-controlled intersections, the larger number of samples in Ohio than in Minnesota
motivated us to use the Ohio data for developing SPFs and the Minnesota data for validation.

The base conditions for three-leg stop-controlled intersections (3ST) and four-leg stop-controlled
intersections (4ST) are specified in the current HSM. As shown in Table 4-15, most of the base conditions
for intersections in the current HSM are available in Minnesota; an exception is skew angle. Specifically,
according to the data description, the type of intersection is interpreted as either skewed or not skewed.
Skewed intersections are excluded from the data.

Table 4-15: HSM Base Conditions and Data Availability, Multilane Intersections

Base Condition (3ST and 4ST) Criteria Minnesota
Intersection skew angle 0°-5° NO
Intersection left-turn lanes None YES
Intersection right-turn lanes None YES
Lighting None YES

Table 4-16 summarizes descriptive statistics for base condition SPFs for 3ST intersections; the sample size
is 149. The descriptive statistics for 3ST intersections from the Ohio validation data are shown in Table
4-17.

Table 4-18 presents the descriptive statistics for base condition SPFs for 4ST intersections; the sample size
is 139. The descriptive statistics for 4ST intersections for the Ohio validation data are shown in Table 4-17.

As no base conditions were defined for 4SG intersections, we needed to define them; they are listed in
Table 4-20. The defined base condition for lighting is not consistent with that of the stop-controlled
intersections because most four-leg signal-controlled intersections are lit. Also, no information is known
regarding the presence of red light—running cameras.

Table 4-21 shows descriptive statistics for base condition SPFs for 4SG intersections; the sample size is 53.
The sample size for the validation data, from Minnesota, is only 24. Descriptive statistics for the validation
data are shown in Table 4-22.
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Table 4-16: Descriptive Statistics for Base Condition SPFs, Multilane Three-Leg Stop-
Controlled (3ST) Intersections

Minne\:zzlaa‘zlle: 149) Mean S.D. Min Max
Major AADT (veh/day) 11,651 7,759 1,325 36,000
Minor AADT (veh/day) 760 984 3 5,800
Total entering vehicles (veh/day) 12,031 7,730 2,025 36,028
Presence of lighting 0 0 0 0
Presence of left-turn lanes 0 0 0 0
Presence of right-turn lanes 0 0 0 0
Crash Type Severity Cl\rl;)s‘r:)efs Mean S.D. Min Max
KABCO 338 2.268 2.426 0 12
Total KABC 139 0.933 1.277 0 8
KAB 62 0.416 0.754 0 4
KA 10 0.067 0.277 0 2
KABCO 85 0.57 0.988 0 6
Same direction KABC 34 0.228 0.534 0 2
KAB 13 0.087 0.327 0 2
KA 2 0.013 0.115 0 1
KABCO 92 0.617 1.211 0 8
Intersecting KABC 50 0.336 0.827 0 6
direction KAB 29 0.195 0.541 0 4
KA 6 0.04 0.229 0 2
KABCO 10 0.067 0.251 0 1
KABC 0.027 0.162 0 1
Opposite direction

KAB 2 0.013 0.115 0 1
KA 1 0.007 0.082 0 1
KABCO 152 1.020 1.500 0 11
Single vehicle KABC 51 0.342 0.624 0 3

KAB 18 0.121 0.347 0

KA 1 0.007 0.082 0
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Table 4-17: Descriptive Statistics for Base Condition Validation Data, Multilane Three-Leg

Stop-Controlled (3ST) Intersections

Copyright National Academy of Sciences. All rights reserved.

Ohi\cl)a(rl:la:I:ﬂ) Mean S.D. Min Max
Major AADT (veh/day) 8,859 5,485 830 25,000
Minor AADT (veh/day) 1,033 1,231 88 10,450
Total entering vehicles (veh/day) 9,375 5,482 915 25,320
Presence of lighting 0 0 0 0
Presence of left-turn lanes 0 0 0 0
Presence of right-turn lanes 0 0 0 0
Skew Angle (°) 1.880 1.748 0 5
Crash Type Severity CI:I:;::S Mean S.D. Min Max
KABCO 157 1.342 2.146 0 15
Total KABC 63 0.538 1.071 0 5
KAB 46 0.393 0.861 0 5
KA 15 0.128 0.446 0 3
KABCO 61 0.521 1.142 0 7
Same direction KABC 21 0.179 0.448 0 2
KAB 15 0.128 0.384 0 2
KA 4 0.034 0.182 0 1
KABCO 47 0.402 0.956 0 5
Intersecting KABC 23 0.197 0.605 0 3
direction KAB 17 0.145 0.478 0 3
KA 8 0.068 0.253 0 1
KABCO 12 0.103 0.402 0 3
Opposite direction KABC 0.043 0.203 0 1
KAB 0.026 0.159 0 1
KA 0 0 0 0
KABCO 37 0.316 0.611 0 3
KABC 14 0.12 0.375 0 2
Single vehicle
KAB 11 0.094 0.347 0 2
KA 3 0.026 0.206 0 2
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Table 4-18: Descriptive Statistics for Base Condition SPFs, Multilane Four-Leg Stop-Controlled
(4ST) Intersections

Variable .

Minnesota (N = 139) Mean S.D. Min Max
Major AADT (veh/day) 10,803 6,606 2,422 34,500
Minor AADT (veh/day) 589 629 25 4,654
Total entering vehicles (veh/day) 11,392 6,667 2,499.5 34,583
Presence of lighting 0 0 0 0
Presence of left-turn lanes 0 0 0 0
Presence of right-turn lanes 0 0 0 0

No. of
. D. .

Crash Type Severity Crashes Mean S Min Max
KABCO 390 2.806 3.476 0 23
KABC 165 1.187 1.662 0 12

Total
KAB 80 0.576 1.028 0 7
KA 14 0.101 0.439 0 4
KABCO 98 0.705 1.207 0 8
KABC 27 0.194 0.48 0 2
Same direction
KAB 12 0.086 0.306 0 2
KA 1 0.007 0.085 0 1
KABCO 151 1.086 2.118 0 17
Intersecting KABC 85 0.612 1.299 0 10
direction KAB 41 0.295 0.847 0 7
KA 10 0.072 0.393 0 4
KABCO 15 0.108 0.334 0 2
R KABC 0.065 0.247 0 1
Opposite direction
KAB 0.036 0.187 0 1
KA 0.007 0.085 0 1
KABCO 126 0.906 1.197 0 6
, , KABC 44 0.317 0.59 0 2
Single vehicle

KAB 22 0.158 0.404 0 2
KA 2 0.014 0.120 0 1
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Table 4-19: Descriptive Statistics for Base Condition Validation Data, Multilane Four-Leg Stop-

Controlled (4ST) Intersections

Copyright National Academy of Sciences. All rights reserved.

Oh\ilgillat:e&’,) Mean S.D. Min Max
Major AADT (veh/day) 9,853.771 | 4,799.732 2,690 20,623
Minor AADT (veh/day) 1,320.446 | 2,542.512 95 20,623
Total entering vehicles (veh/day) 11,174.217 | 5,949.802 3,300 41,246
Presence of lighting 0 0 0 0
Presence of left-turn lanes 0 0 0 0
Presence of right-turn lanes 0 0 0 0
Skew angle (°) 1.831 1.576 0 5

Crash Type Severity CI:':;::S Mean S.D. Min Max
KABCO 199 2.398 3.072 0 16
Total KABC 83 1.000 1.593 0 8
KAB 69 0.831 1.387 0 7
KA 23 0.277 0.786 0 5
KABCO 42 0.506 0.875 0 4
Same direction KABC 17 0.205 0.435 0 2
KAB 12 0.145 0.354 0 1
KA 2 0.024 0.154 0 1
KABCO 96 1.157 2.167 0 12
Intersecting KABC 47 0.566 1.241 0 7
direction KAB 40 0.482 1.063 0 5
KA 19 0.229 0.687 0 4
KABCO 18 0.217 0.47 0 2
Opposite direction KABC 0.096 0.335 0 2
KAB 0.096 0.335 0 2
KA 0.012 0.11 0 1
KABCO 43 0.518 0.888 0 6
Single vehicle KABC 11 0.133 0.341 0 1
KAB 9 0.108 0.313 0 1
KA 1 0.012 0.11 0 1
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Table 4-20: Base Condition Criteria and Data Availability, Multilane Four-Leg Signal-Controlled

(4SG) Intersections

Base Condition Criteria Ohio
Intersection skew angle 0°-5° X
Intersection left-turn lanes None X
Intersection right-turn lanes None X
Red light violation cameras None

Lighting Present X

Table 4-21: Descriptive Statistics for Base Condition SPFs, Multilane Four-Leg Signal-

Controlled (4SG) Intersections

Copyright National Academy of Sciences. All rights reserved.

Variable - Ohio (N = 53) Mean S.D. Min Max
Major AADT (veh/day) 4,686 2,704 880 12,420
Minor AADT (veh/day) 1,902 1,748 157 7,992
Total entering vehicles (veh/day) 6,587 3,158 1,522 14,472
Presence of lighting 1 1 1 1
Presence of left-turn lanes 0 0 0 0
Presence of right-turn lanes 0 0 0 0
Skew angle (°) 1.264 1.211 0 5
Crash Type Severity CI::S.I:):s Mean S.D. Min Max
KABCO 249 4.698 4.126 0 16
Total KABC 33 0.623 1.078 0 5
KAB 16 0.302 0.638 0 3
KA 4 0.075 0.267 0 1
KABCO 105 1.981 2.374 0 9
Same direction KABC 14 0.264 0.625 0 3
KAB 4 0.075 0.331 0 2
KA 0.019 0.137 0 1
KABCO 77 1.453 1.927 0 11
Intersecting KABC 13 0.245 0.617 0 3
direction KAB 8 0.151 0.496 0 3
KA 1 0.019 0.137 0 1
KABCO 38 0.717 0.885 0 4
o KABC 0.075 0.267 0 1
Opposite direction
KAB 3 0.057 0.233 0 1
KA 0.019 0.137 0 1
KABCO 29 0.547 0.867 0 4
Single vehicle KABC 2 0.038 0.192 0 1
KAB 0.019 0.137 0 1
KA 0.019 0.137 0 1
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Table 4-22: Descriptive Statistics for Base Condition Validation Data, Multilane Four-Leg
Signal-Controlled (4SG) Intersections

Copyright National Academy of Sciences. All rights reserved.

Minn(\el:;;:\tzlltle = 24) Mean S.D. Min Max
Major AADT (veh/day) 11,371 4543 5101 22,468
Minor AADT (veh/day) 3304 1764 417 6649
Total entering vehicles (veh/day) 14,676 4739 7228 24,727
Presence of lighting N.Ot N.Ot N.Ot N.Ot
Available Available Available Available
Presence of left-turn lanes 0 0 0 0
Presence of right-turn lanes
Skew angle (°) NOt '\!Ot N.Ot I\!Ot
Available Available Available Available
Crash Type Severity C':'l:s.:efs Mean S.D. Min Max
KABCO 202 8.417 7.994 1 32
KABC 57 2.375 2.568 0 12
Total
KAB 16 0.667 0.761 0
KA 2 0.083 0.408 0
KABCO 96 4 4.314 0 16
same direction KABC 24 1 1.445 0 5
KAB 5 0.208 0.415 0
KA 0.042 0.204 0 1
KABCO 65 2.708 2.662 0 11
Intersecting KABC 25 1.042 1.197 0 5
direction KAB 10 0.417 0.584 0 2
KA 1 0.042 0.204 0 1
KABCO 16 0.667 1.049 0 4
S KABC 5 0.208 0.509 0 2
Opposite direction
KAB 0 0 0 0
KA 0 0 0 0 0
KABCO 25 1.042 1.654 0 7
KABC 3 0.125 0.338 0 1
Single vehicle
KAB 0.042 0.204 0 1
KA 0 0 0 0 0
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4.2.2 Estimated Models

Base condition SPFs for 3ST intersections are exhibited in Table 4-23. We tried to estimate regression
coefficients for both the major- and minor-road traffic volumes. In cases where the minor-road traffic
volume was statistically insignificant, we estimated a coefficient for the total entering volume instead. In
either case, the coefficients do not indicate the relationship between crashes at 3ST intersections, and
entering volumes are linear. In addition, only 10 reported KA crashes are sampled for analysis, rendering
all KA crash model results unreliable. Such SPFs should be used with caution. This also applies for the
single-vehicle KAB crash SPF, all opposite-direction crash SPFs, and the same-direction KAB crash SPF. The
MAD:s indicate the average deviations between crash counts, predicted by SPFs, and the observed ones
are relatively low.

Base condition SPFs for 4ST intersections are presented in Table 4-24. Apart from KABCO, KABC, KAB,
same-direction KABCO, and intersecting-direction KABCO crash SPFs, the total entering volume is used as
the exposure variable in the SPF development process. This is because statistically insignificant minor-
road traffic volumes result when estimating SPFs using both major- and minor-road volumes. Similar to
the 3SG intersection KA crash patterns, only 14 reported KA crashes are available in the data, and any KA
crash SPF should be used with caution. We also suggest the same-direction KAB crash SPF, the single-
vehicle KAB crash SPF, and all opposite-direction SPFs be used only with extra care due to the small
samples modeled. The MAD measures indicate low average residuals.

Base condition SPFs for various crash types for 4SG intersections are shown in Table 4-25. In all SPFs, we
used the total entering volume, since minor-road volumes are insignificant when using both the major-
and minor-road volumes as independent variables. The total entering-volume estimated coefficients
range from —0.682 to 1.921. They indicate nonlinear relationships between crashes and entering volume.
Yet, the volume is almost linearly correlated with intersecting-direction KABCO crashes, as indicated by
the volume coefficient. In addition, we used Moore-Penrose inverse matrices for all KA SPFs, the opposite-
direction KABC SPF, the opposite-direction KAB SPF, the single-vehicle KABC SPF, and the single-vehicle
KAB SPF, due to inadequate samples. We suggest those SPFs be used with caution. Finally, the average
residuals are reasonably low, as indicated by the MADs.

4.2.3 Validation of Models

We conducted calibration and validation of rural multilane intersection SPFs using the Ohio data for 3ST
and 4ST intersections and the Minnesota data for the 4SG intersections. The results are presented in
tables 4-26 through 4-27. The calibration factors, obtained using the HSM calibration method, are not
near 1. The calibration function performs slightly better than the HSM calibration method in a few cases.
It should be noted that we used the Moore-Penrose inverse matrix for several SPFs for the severe crash
categories due to limited samples.
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Table 4-23: Base Condition SPFs, Multilane Three-Leg Stop-Controlled (3ST) Intersections

Crash Type
Minnesota Severity bo b; b, bs k -2LL AIC MAD
(N = 149)
KABCO (_f.'215198) (3133) (8:(2);;)) - (gﬁféé) >48.0 | 5561 1516
- #
] e (1262%:) ‘§E§§’ (§;§;;§) - (2)21:{9) 3656 | 3736 | 0793
KAB (2..264) (02221) (0:106) i (6.346) 240.6 | 2486 0.526
# ~ # #
(10c|:z:\shes) (25'.91105) - - (8:?7‘;) (;'ilz?)) 2.7\ 787 0.125
- #
wpco | L[ 1033 [ 0802 06 [, 075 [ ose
- #
Same KABC (?iii? (g:;ig) (82?21) - (%.563998) 160.1 | 1e8.1 ) 0.336
. . _ m # #
drection (13(|:<r2'zhes) éﬁéég) - - (%;02) ?é(.)gg) 88.9 | 949 0.6l
- # # -6#
2crashes) | (15.998) | | ey | oss) | 20| 27| 007
KABCO (1222255 (gﬁg) (gﬁé) - (giggf) 275.5 | 283.5 | 0.658
- #
Intersecting KABC (12473;32? (8222) (8??3) i ((())‘;3:153) 183.5 1 191.5 0.394
directi -13. . . .365"
o 48 | Sson | 0300) | 0182) | osay | 1355 | 135 | 0272
# ~ # #
(6cr§/;,\hes) (48'.13351) - - (32333) (56%5959) 4811 54110079
] . . 9.029
(merziﬁes) (22323) - - (%.3;%52) (’(‘)'1(;)2_:) 725 | 7851 0126
# # -7#
Opposite | s iy | oas9) | | | oems) | oos) | 76| 43| oost
direction KAB 3.758" -1.019% | 1.43x10%
(2 crashes) | (10.847) i i (1.228) (10.729) 205|265 0.026
# _ # #
(1cKr/:sh) ézsﬁé) i i (Z:;gé) (fé?jjs) 791 139 0016
KABCO ('17_'729569) - - (82?23) (gzggi) 405.2 | 411.2 | 1.026
- #
e KABC (27_'58317) - - (82222) (?2)%%2) 219.3 | 225.3 | 0.469
hicl - # . # .
] e | e || ew |t e o) oms
# ~ # #
(1cKr/:sh) (;;21:8) - - ((1):;22) (;)%(.)Sga) 1181 178 0013
* Moore-Penrose inverse matrix used.
# Not significant at 90th percentile confidence interval.
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Table 4-24: Base Condition SPFs, Multilane Four-Leg Stop-Controlled (4ST) Intersections

Crash Type
Minnesota Severity bo b, b, bs k =2LL AIC MAD
(N = 139)
KABCO (3556;) (gﬁg) (8:333) i (g:g;g) 553.9 | 561.9 | 1.886
e [t e T o s
B8 | Cuon | 00e9) | 0142 |~ | (oo | 254| 2774 | 068
- # #
(14 cl:;\shes) (?621? - - (10..%543;) (ii?es) 85.5 1 9151 0.184
oo | s | T T T o
CABC 113.190 ] ] 1118 | 0619 | | o1 | 009
e ) o oo~
direction | (15 crashes) | (5.235) ’ ’ (0.558) | (1os9) | S2°| 88> 0158
., s | 200
(1 cKrgsh) (25%3:7) - - (;;gg) (;.1;;) 1121 17210014
oo | i | o T | 030 s s s
Intersecting KABC (—28..96576) i i (g:;ig) (3?%) 2863 | 292.3 | 0.805
directi -9, . .
rection KAB (2'11326) - - (g'm) (i:gg) 181.8 | 187.8 | 0.483
KA '(17(_’2'3862? - - (gzgzg) (181.623125) 66.2 | 722 | 0.137
- # # #
(15K’é\rziges) (22222) - - (%.18736) (01'.1295;) 97.5 1 103.5 1 0.193
ot . | 8545
ooposte | fré\zf?es) (22222) - - (%.363786) (;1(?2; 658 | 718 0121
direction KAB 6.969" ] ] 0276" | 038
(5 crashes) (8.465) (0.911) (3'11025) 43.0 49| 0.069
- # # #
(1 cKr/:sh) (Zf.gi) i i (Zﬂ:s) (3'3?;;54) 711 13110013
KABCO ('f_':jg) ; . (82232) (8:%73) 343.6 | 349.6 | 0.849
110.416 0.876 | 0.154*
e K|;AABBC (_27_71‘;? ; - (855923 (g_::? 191.8 | 197.8 | 0.442
vehicle (22 crashes) | (3.664) ; ’ (0392) | (0.827) | 1265 | 1325 0.268
KA 27.071 ] ] 20840 | 2778
(2 crashes) (15.661) (1.591) (3.11008) 159 21.9 | 0.027

* Moore-Penrose inverse matrix used.
# Not significant at 90th percentile confidence interval.
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Table 4-25: Base Condition SPFs, Multilane Four-Leg Signal-Controlled (4SG) Intersections

Crash Type
Ohio Severity bo b; | b bs k =2LL AIC MAD
(N=53)
KABCO (_27,';:71) - - (gzggg) (g:igi) 264.8 | 270.8 | 2.792
- #
- voc [ ||| ot | e | 7| om
KAB (;4753 - - ((1):222) (%'fzi) 69.5 | 755 | 0.434
- : - : =
ey | oy ||| e | e e | sas| o
KABCO (122822? - - (é:zié) (8112“1‘:) 183.3 | 189.3 | 1.567
#
| e | el e T 0nse g e | asso
same direction -14.669" 1.242" 5.026"
KAB (11669) | ~ | (1.305) (8.002) 26.7 | 32.7| 0.137
- e - : —
(1cKr/:sh) O'Efo - - (gziii) 3'87?310 9.2° | 152" | 0.036"
KABCO (_ig;f) -] - (é:gjg) (8122;) 166.5 | 172.5 | 1.123
- #
Intersecting KABC (1744?13? o ((1):315) (11972857) 61.2 67.2| 039
direction -20. ) .105*
KAB (2083‘5 - &g;g) (22{&-2) 426| 486 0256
- : - : —
(1cKr/:sh) (8:832) T (82%?) 2'146(3310 103" | 163" | 0.038°
- #
KABCO (isgj) -] - (gzgig) (02'_933192) 119.3 | 125.3 | 0.673
¥ _ * -7*
omoste | ey | ||| o | T | s oser
direction (3c|::j1es) 1.:)76 i i O.E;SS 1.24?310 234° | 294 | 0.108"
: - ; =
(1cKrgsh) ((1327.;982) N (gﬁﬁiﬁ) 5'14?.);10 5.97| 15.97) 0.037°
# ~ # #
(14K?rBa1§P?es) (;535872) | (8:;2) (()6.5'5,75?)) 105.3 | 111.3 | 0.685
- : - : —
o o) Latm ||| e e | oo
KAB -5.352 e 0.039 4.470x107 99° | 159" | 0.038"
(1 crash) (12.126) (1.393) ()
- e : —
(1cKr§sh) (152..315226) T (01.321) 4.47?310 99" | 1597 | 0.038°

* Moore-Penrose inverse matrix used.
# Not significant at 90th percentile confidence interval.
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Table 4-26: Validation of the Minnesota (2009-11) Safety Performance Functions Using the Ohio (2009-11) Data, Three-Leg Stop-

Controlled (3ST) Intersections

Calibration Factor (HSM, 2010)

Crash Observed HSM MAD | MSPE L Calibration Function (Srinivasan elt\|al., 2016)
"
Type Crashes Pred. CF Fitted MAD | MSPE a b k Fitted MAD | MSPE
KABCO 157 | 256.174 | 1.636 | 4.814| 0613 | 157 | 1.286 | 3.938 (8-?33) (g'ggg) (é'ggﬁ) 155.74 | 1.284 | 3.952
0.557 1.240 1.544
KABC 63 | 111.594 | 0.898 | 1.261 | 0.565 63| 0709 | 1048 | (07330, 0578) (Gia0) | 63817 | 0709 | 1.057
1.163 1.344 1.808
KAB 46 | 51.146 | 0587 | 0.699 | 0.899 46 | 0.566 | 0697 | (1255 (0.262) (0o33) | 46.980 | 0566 | 0.708
E:3
KA 15| 9.408 | 0.197 | 0.207| 1.594 15 | 0.237 | 0.211 (8-8831) (‘&-853?5) (22%%%,) 14.667 | 0.219 | 0.184
SD 0.752 0.534 1.797
KABEO 61| 66.245 | 0697 | 1.237| 0.921 61| 0675 | 1224 O75% 03a4) (Gibae | 60399 | 0677 | 1.219
SD 0.691 0.943 0.356"
oo 21| 28462 |0327| 0201| 0738 21| 0288 | 0192 0850 ©:350) G3ee) | 21.094| 0289 | 0.192
2.540° 1.173 1.043"
SD KAB 15| 9.097 | 0.187 | 0.147| 1.649 15| 0226 | 0.144 [ EOLE 6:940) (oo | 14996 | 0225 | 0.144
ki3 " -Sf
SD KA 4| 1403|0045 | 0034| 2851 4| 0.066 | 0.033 (%%%%) E?-gg‘l‘) 9-‘(‘5’%"9%1()’ 4.000 | 0.066 | 0.033
D 0.558 0.637 7.890
KADCO 47| 77587 | 0.741| 1.105| 0.606 47 | 0592 | 0916 | 0325 0.500) (i) | 47174 | 0597 | 0.879
D 0311 0.378° 5613
KASC 23| 43927 | 0464 | 0502| 0524 23| 0331 ] 0383 O30} O3 o4 | 22937 | 0340358
# H H
ID KAB 17 | 26.069 | 0.305 | 0.253 | 0.652 17 | 0.249 | 0.231 (%32%77) (%Sﬁ% (42-%%%) 17.002 | 0.254 | 0.223
iE:3 # -7H#
ID KA 8| 6103|0116 0068| 1.311 8| 0131| 007 4-?8%’612? &-332) 9-%8%"214? 8.000 | 0.119 | 0.059
oD 77682 4.65T 2976 | 11.947 | 0.177 | 0.151
KABO 12| 7.406|0.155 | 0.160| 1.620 12| 0187 | 0157 [ L 1150309 | (Ga3s) G ! ! 1
( ) -
ane 5| 2846 |0065| 0041| 1.757 5| 0.081 | 0.041 1-’(3?4 1-((’1)0 6'469(”)‘10 5119+ | 0:082| 0.040
2.200x10°° | -1.552° | 9.786x10° 0.049 | 0.025
0D KAB 3| 2021]0042]| 0026| 1.485 3| 0051 | 0.026 | G500a09) o (8.320x10° | 3.000* | 0:049 | 0.025
. . 4)
OD KA 0 | 100.834 | 0.862 | 60.951 0 0 0 0 Failed to Converge
SV 0361 1,034 03617
KABCO 37 | 102.663 | 0.747 | 0.707 | 0.360 37| 0459 | 0351| 0% (0.980) G35 | 36955 | 0458 | 0351
SV 0.706" 1.498 1.075"
KASC 14 | 34.665 | 0.347 | 0.168 | 0.404 14| 0211 | 0136 [ Q78 (0.8%8) o6y | 13986 | 0210135
o | 2.7 n
SV KAB 11| 14.895 | 0202 | 0.121| 0.739 11| 0.174 | 0.120 8-35‘7(’6‘)10 (4.010% (22-27353) 10.973 | 0.168 | 0.115
10%) :
- ] .
SV KA 3| 0950|0034| 0043| 3.158 3| 0.051 | 0.043 5-40%’)‘10 '1-(6;‘5 (12- 113952) 2.903* | 0:048| 0.040

*Calibration Factor; " Moore-Penrose inverse matrix used; ¥ Not significant at 90th percentile confidence interval.
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Table 4-27: Calibration of the Minnesota (2009-11) Safety Performance Functions Using the Ohio (2009-11) Data, Four-Leg Stop-
Controlled (4ST) Intersections

Crash | Observed | HSM | nooo | nicor Caﬁbratlilon Factor (HSM) Calibration Function (Srinivasan e}\'al. 2016)
"
Type Crashes Pred. CF Fitted MAD | MSPE a b k Fitted MAD | MSPE
KABCO 199 | 285.409 | 2.572 | 13.306 | 0.697 | 199 | 2.114 | 9.81 (g-ggﬁ) (8-%2) (8'223) 202.66 | 2.098 | 8.833
0.764 0.717 1.124
KABC 83 | 132.870 | 1.381 | 4.001 | 0.625 83| 1122 | 2688 (0753 0.330) (0416 | 83856 | 1.096 | 2.348
1.030 0.720 1.320
KAB 69 | 66.733 | 0974 | 1.941| 1.034 69 | 0.985 | 1959 1900, 0.354) (0353 | 69392 0968 | 1.778
# #
KA 23| 8143|0334| 0637] 2.824 23 | 0.438 | 0.612 (23-693;%) (%965372) (i-gég) 23.588 | 0.443 | 0.611
SD 0.634 0.699 0.673"
KABEO 42| 67.011 | 0747 | 1.138| 0.627 42 | 0620 | 0815 | 3937, 0599) Qo | 42536 | 0623 | 0725
) 0.219" 0.036" | 2.706x10°
AC 17 | 15.813 | 0.307 | 0.185 | 1.075 17| 0314 | 0186 [ 350 o) | (i heomiy | 17.004 | 033 | 0.186
F:3 # -6F
SD KAB 12| 7.120| 0201 | 0.123] 1.685 12 | 0.239 | 0.118 (15%%%) (11-935576) 7'%83’&? 12.000 | 0.234 | 0.120
# H -6F
SD KA 2| 0603]0031| 0024 3316 2 | 0.048 | 0.025 (%%0120) Eg-gg% 5'%353"715()) 2.000 | 0.047 | 0.024
D 1094 |  1.056 0.295 1.979
KADCO 96 | 201.074 | 2.408 | 34.202 | 0.477 9 | 1.61 o] (0208 0100 Oy | 96532 | 1373 | 45559
ID KABC 47| 50749 | 0.78 | 1.452| 0.926 47 | 0.764 | 1.451 ((1)%3) (é-ggg) (S-égg) 48.808 | 0.760 | 1.525
#
ID KAB 40| 24.419 | 0.608 | 1.114| 1.638 40 | 0.688 | 1.068 (‘230%‘;) (%'%E) é-g%g) 41.749 | 0.681 | 1.129
ID KA 19| 5952|0275 | 0.487]| 3.192 19| 0377 | 0ae0| 2737 1.226° 3.166" 19.301 | 0.377 | 0.463
K (13.421) (0.884) (L.954)
oD 58.693 7.546 0.004
KABLO 18| 8929|0279 | 0.226]| 2016 18 | 0342 | 0211 | 5283 (559) Ove) 18.000 | 0.330 | 0.210
oD 10007 3.459 0.718"
e 8| 5477|0149 | o0110| 1.461 8| 0.174| 0109 [ 550, ©.910) A 580) 7.771 | 0.166 | 0.106
OD KAB 8| 2998|0.126| 0114 | 2.668 8| 0174 | 0109 | ., 1000° 2.811 0.871" 7.722 | 0.168 | 0.106
- : : : - : (2467.560) | (0.760) (2.081) _ : - :
0D KA 1| 1076 | 0.025| 0.024| 0.930 1| 0024 | 0.023 (%%%‘}3) (00-13%86) 8-‘(‘31’%‘; 1.000 | 0.024 | 0.012
SV 0.582 0.957 0.422"
KABCO 43| 74346 | 0734| 095 0578 43 | 0608 | 0749 | 0285, ©:330) O | 43248 0.609 | 0.747
SV 0.294" 0.663" | 1.464x10°"
ouc 11| 25.943 | 0352 | 0.157 | 0.424 11 | 0.225 | 0.114 (f _(_;,9176’) (8'299732 : é% _303183) . 11.016 | 0.227 | 0.114
. . . X "~
SV KAB 9| 13.087 | 0229 | 0.098 | 0.688 9| 0191 | 0.095 (g 85533 %_g ggg : ﬁ% _30512()) . 8.690 | 0.188 | 0.095
. . . X "~
SV KA 1| 1.099 | 0.025| 0.012]| 0.910 1| 0024 | 0012 Q%P G58) (0555 1.000 | 0.024 | 0.012

*Calibration Factor; " Moore-Penrose inverse matrix used; ¥ Not significant at 90th percentile confidence interval.
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Table 4-28: Calibration of the Ohio (2009-11) Safety Performance Functions Using the Minnesota (2009-11) Data, Four-Leg Signal-

Controlled (4SG) Intersections

Calibration Factor (HSM)

Calibration Function (Srinivasan et al. 2016)

%?;: Croched | e | MAD | MmSPE CF* | Fitteq | MAD | MSPE a b k N Fitted | MAD | MSPE
KABCO 202 | 238.99 | 5.664 | 45.653 | 0.845 | 202 | 5.239 | 44.93 (Od.2224§) (322%) (8%3) 200.025 | 4.929 | 39.730
KABC 57 | 45.671 | 1.491 | 5.074 | 1.248 57 | 1.591 | 4.718 (3%3?) (8:g§g) %é%%’; 56.522 | 1.581| 4.771
KAB 16 | 21.439 | 0.667 | 0.590 | 0.746 16 | 0.596 | 0.514 %%‘-’275*) (%.75%9%; 8-5’(“1)0'8* 15.135" | 0.602" | 0.513"
KA 2 1.466 | 0.140 0.162 | 1.364 2| 0.161 | 0.162 Failed to Converge
KABEO 96 | 139.79 | 3.133 | 15.321 | 0.687 96 | 2.791 | 12.42 (%ég) (éjgg) (852;) 95.170 | 2.746 | 11.927
KaaC 24 | 22243 | 1.063 | 1.672 | 1.079 24 | 1.082 | 1.660 (cl)ﬁgﬁ) (%'851%#) (%%% 23710 | 1.081| 1.683
SD KAB 5| 4637 | 0316 | 0.166 | 1.078 5| 0324 | 0.166 0"(‘30* 0-3(‘_?? ?) 5.000" | 0.328° | 0.164"
SD KA 1| 0045 | 0043 | 0042 | 22.40 1| 0082 | 0.043 ?) ‘1-(2_337* 0-¥‘9)4¥ 1.009" | 0.072° | 0.033"
KABCO 65| 79.477 | 1.871 | 6.012 | 0.818 65| 1.727 | 5.685 (()6.75%Z) (})'%‘g) (00-'3231%*) 64.778" | 1.724" | 5.662°
KASC 25| 17.941 | 0795 | 1.233 | 1.393 25| 0.807 | 1.118 ((1)131525) (82223) (%257%3 24966 | 0.807 | 1.126
ID KAB 10 | 15.474 | 0.498 | 0.380 | 0.646 10 | 0.405 | 0.293 O-%'?Z* 0-?_5;7* ?) 10.000° | 0.452° | 0.296°
ID KA 1| 1.093 | 0.080| 0.037]0.915 1| 0077 | 0.037 (%.%217*) (%1213; 9-6’(‘.1)0 "| o846 | 00717 | 0.037°
KABLO 16 | 34.491 | 1.105 | 1.512 | 0.464 16 | 0.699 | 0.954 (8%2) (ﬁgg) (odgag') 16.044 | 0.671| 0918
e 5| 2454 0273 | 0257 | 2.037 5| 0.340 | 0.243 13026)-250* 4-*(3_9)’7* 0'%‘?2* 4.978° | 0.309° | 0.230"
0D KAB 0| 1541| 0064| 0004| 0 0 0 0 ) s | oy | AR TR | o
0D KA 0| 0293 0012| 0000| 0 0 0 0 D) R G
KABCO 25| 9301 | 1.043 | 3.109 | 2.688 25 | 1.109 | 2.788 (00-%%‘5 (‘i-gfg) %2‘57;) 24235 | 1.032| 2.024
KABC 3| 0709 | 0.148 | 0.119 | 4.229 3| 0220 | 0.111 2'69(’.‘)10"* '3-(6_)73* ?) 3.000" | 0.212° | 0.106"
SV KAB 1| 3.165| 0.164 | 0.062 | 0.316 1| 0.080 | 0.042 0'((’3‘4* 0-%}3* ?) 1.000° | 0.080° | 0.040"
SV KA 0| 3.65|0132| 0030]| o0 0 0 0 0 ey | TR0 | Miame| ik | A

*Calibration Factor; " Moore-Penrose inverse matrix used; ¥ Not significant at 90th percentile confidence interval.
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5 MODELS FOR URBAN AND SUBURBAN ARTERIALS

5.1 ROADWAY SEGMENTS

5.1.1 Estimation Data

The process of developing models for urban and suburban arterial road segments involved developing an
initial set of models and then validating them with a second dataset obtained later. Following the
successful validation, we combined the two datasets into a larger dataset to re-estimate the models.

We attempted three sets of models:

1. Base Condition SPFs—using only those sites meeting the HSM base conditions

2. Average Condition Exposure SPFs—using all available sites but only including exposure-related
variables in the models

3. Average Condition Multi-Variable SPFs—using all available sites and including non-exposure
variables where possible

The data for the initial models developed for urban and suburban arterial segments came from Ohio. The
Ohio Department of Transportation (DOT) collected all of the data necessary for calibrating and applying
the SPFs and CMFs in the current HSM chapter on urban and suburban arterials and made them available
to the research team. No variables beyond the necessary ones were available in this database.

The Ohio data were provided for all site types in the HSM chapter, including the following:

e Two-lane undivided (2U)

e Two-lane plus two-way left-turn lane (3T)
e Four-lane divided (4D)

e Four-lane undivided (4U)

e Four-lane plus two-way left-turn lane (5T)

Table 5-1 shows the total mileage for each site type in Ohio and the sum of crashes by crash type in the
data used for base condition models. Traffic volume and crash data for all sites include the years 2007—
11. The crash data do not include intersection-related crashes. The Ohio DOT defines intersection crashes
as any crash within 250 feet of an intersection. This definition has been adopted in part because of the
perceived unreliability of the police reports in properly identifying intersection-related crashes. The
queried crash types for the initial models included the following:

e Pedestrian—vehicle (PED)

e Bicycle—vehicle (BIKE)

Multiple-vehicle driveway related (MVD)

Rear end (RE)

Head-on (HO)

Right angle (ANG)

Sideswipe same direction (SSD)

Sideswipe opposite direction (SOD)
Multiple-vehicle non-driveway other (MVN OTHER)
Single vehicle (SV)
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e Single-vehicle run-off-road (SV ROR)

e Single-vehicle fixed object (SV FIXEDOBJ)
e Single-vehicle other object (SV OTHEROBI)
e Single-vehicle other (SV OTHER)

e Animal-related (ANIMAL)

e Nighttime (NIGHT)

In the course of developing the SPFs, some crash types were combined. Additionally, we decided not to
include animal crashes, although they remain for the purposes of the data description, as they are
informative with respect to crash type occurrence in Ohio, which provided the initial calibration data.

Table 5-2 shows the number of sites (N), minimum, maximum, mean, and standard deviation for the crash
counts for the five-year period for each site type in Ohio for the base condition sites.

Table 5-3 shows the number of sites, minimum, maximum, mean, and standard deviation for the
continuous explanatory variables for each site type in Ohio for the base condition sites. The explanatory
variable definitions are identical to those in the current HSM urban and suburban arterial chapter.

Table 5-4 shows the total mileage for the discrete explanatory variables for each site type for base
condition sites in Ohio. Again, the variable definitions are identical to those in the current HSM chapter.
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Table 5-1: Ohio Segment Length and Crash Type Totals for Five-Year Period for Base Condition Sites (Urban/Suburban Arterial

Segments)

Site Length MVN SV

Type (mi) PED | BIKE | MVD | RE | HO | ANG | SSD | SOD OTHER SV | ROR | ANIMAL | FO | MO OTHER NIGHT
2U 447.256 25 10 370 | 1255 | 43 77 | 140 | 240 311 | 3582 | 1360 2112 | 1289 | 36 145 2516
3T 62.174 3 2 108 | 259 4 37 21 24 43 | 364 94 253 95 5 11 298
4D 160.595 17 5 134 | 1151 4 58 | 320 38 174 | 1611 488 1045 | 443 | 44 79 1368
4U 97.7 19 8 232 | 657 | 17| 109 | 247 63 112 | 462 158 278 | 159 | 12 13 528
5T 74.99 12 8 396 | 1205 | 12| 146 | 322 59 165 | 674 204 420 | 206 | 18 30 793
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Table 5-2: Ohio Segment Crash Type Statistics for Five-Year Period for Base Condition Sites (Urban/Suburban Arterial Segments)

Site

MVN

SV

ANIM

sV

Type Stat. PED | BIKE | MVD RE HO | ANG | SSD | SOD OTHER SV ROR AL FO MO OTHER Night
2U N 760 760 760 760 | 760 | 760 | 760 | 760 760 760 | 760 760 760 760 760 760
2U MIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2U MAX 2 1 13 66 2 7 7 8 8 109 36 81 32 3 8 78
2U MEAN | 0.03 0.01 | 0.49 1.65| 0.06 | 0.10 | 0.18 | 0.32 0.41 471 | 1.79 2.78 1.70 0.05 0.19 3.31
2U STD 0.19 0.11 | 1.30 421 | 0.25| 047 | 0.62 | 0.88 1.01 8.75 | 3.84 5.79 3.64 0.25 0.60 6.28
3T N 182 182 182 182 182 | 182 | 182 | 182 182 182 182 182 182 182 182 182
3T MIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3T MAX 1 1 10 34 1 6 2 4 7 56 13 42 12 1 2 36
3T MEAN | 0.02 0.01 | 0.59 142 | 0.02 | 0.20 | 0.12 | 0.13 0.24 2| 0.52 1.39 0.52 0.03 0.06 1.64
3T STD 0.13 0.10 | 1.54 3.70 | 0.15 | 0.63 | 0.37 | 0.52 0.70 523 | 142 3.92 141 0.16 0.26 3.73
4D N 358 358 358 358 | 358 | 358 | 358 | 358 358 358 | 358 358 358 358 358 358
4D MIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4D MAX 2 2 19 172 1 7 28 4 19 98 37 61 36 4 8 85
4D MEAN | 0.05 0.01 | 0.37 3.22| 001 | 0.16 | 0.89 | 0.11 0.49 450 | 1.36 2.92 1.24 0.12 0.22 3.82
4D STD 0.24 0.14 | 164 | 1398 | 0.11 | 0.67 | 2.64 | 0.44 1.62 | 10.76 | 3.51 7.32 3.19 0.45 0.86 9.13
4U N 348 348 348 348 | 348 | 348 | 348 | 348 348 348 | 348 348 348 348 348 348
4U MIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4U MAX 2 3 34 78 2 21 32 7 13 35 15 25 15 1 2 28
4U MEAN | 0.05 0.02 | 0.67 18| 0.05| 031 | 0.71 | 0.18 0.32 133 | 045 0.80 0.46 0.03 0.04 1.52
4U STD 0.26 0.20 | 2.55 591 | 023 | 134 | 238 | 0.68 1.14 326 | 131 2.25 1.32 0.18 0.22 3.61
5T N 180 180 180 180 180 | 180 | 180 | 180 180 180 | 180 180 180 180 180 180
5T MIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5T MAX 2 2 29 115 2 11 24 4 18 46 16 29 16 2 4 43
5T MEAN | 0.07 0.04 | 2.20 6.69 | 0.07 | 0.81| 1.79 | 0.33 0.92 3.74 | 113 2.33 1.14 0.10 0.17 4.41
5T STD 0.27 0.23 | 437 | 1599 | 0.27 | 1.75| 3.48 | 0.76 2.16 6.75 | 2.34 4.66 2.39 0.35 0.50 7.54
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Table 5-3: OH Segment Continuous Variable Statistics for Base Condition Sites (Urban/Suburban Arterial Segments)

Site Sl Length | AADT Med Parking FODensity Offset Maj Min Maj Min Maj Min Other
Type Width Prop FO Comm Comm Ind Ind Res Res Dwy
2U N 760 760 760 760 760 760 760 760 760 760 760 760 760
2U MIN 0.01 100 0 25 2 0 0 0 0 0 0 0
2U MAX 6.29 | 23,028 0 75 20 10 41 6 28 4 193 5
2U MEAN 0.59 6975 0 37.76 8.95 0.19 2.34 0.08 0.97 0.03 | 10.96 0.03
2U STD 0.72 3978 0 12.95 3.80 0.77 4.70 0.48 2.63 0.26 | 20.03 0.24
3T N 182 182 182 182 182 182 182 182 182 182 182 182 182
3T MIN 0.02 1356 0 25 2 0 0 0 0 0 0 0
3T MAX 3.29 | 23780 0 75 20 11 49 12 10 2 65 1
3T MEAN 0.34 1022 0 41.87 8.11 0.98 5.24 0.29 0.41 0.05 4.82 0.02
3T STD 0.44 4034 0 0 13.75 4.09 1.89 9.12 1.17 1.27 0.27 8.99 0.15
4D N 358 358 358 358 358 358 358 358 358 358 358 358 358
4D MIN 0.01 256 10 0 25 10 0 0 0 0 0 0 0
4D MAX 4,81 | 45,874 100 0 75 30 33 47 8 5 2 64 2
4D MEAN 0.45 | 14,384 33.27 0 34.32 21.63 0.42 1.11 0.14 0.13 0.01 0.87 0.02
4D STD 0.67 8758 29.14 11.67 4.11 211 4.60 0.69 0.61 0.14 4.24 0.18
4U N 348 348 348 348 348 348 348 348 348 348 348 348 348
4U MIN 0.01 1150 0 25 2 0 0 0 0 0 0 0
4U MAX 5.96 | 41,418 0 75 25 11 57 11 16 3 78 4
4U MEAN 0.28 | 14,281 0 43.09 7.84 0.48 3.56 0.27 0.52 0.04 3.45 0.05
4U STD 0.47 7350 0 0 13.84 4.54 1.32 7.05 0.93 1.93 0.25 9.06 0.34
5T N 180 180 180 180 180 180 180 180 180 180 180 180 180
5T MIN 0.01 5356 0 0 25 2 0 0 0 0 0 0 0
5T MAX 2.91 | 50,553 0 0 75 20 23 75 9 16 2 46 2
5T MEAN 0.42 | 19,422 0 0 38.97 8.47 2.23 8.09 0.42 0.52 0.07 3.05 0.08
5T STD 0.51 | 83456 0 0 10.74 4.37 4.06 12.22 1.20 1.92 0.30 7.02 0.31
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Table 5-4: OH Segment Categorical Variable Total Mileage (mi.) for Base Condition Sites (Urban/Suburban Arterial Segments)

Variable 2U 3T 4U 4D 5T
Lighting Yes —0.000 Yes —0.000 Yes —0.000 Yes —0.000 Yes —0.000

No —447.256 No—-62.174 No —97.700 No —160.595 No —74.990
Automated Enforcement Yes —0.000 Yes —0.000 Yes —0.000 Yes —0.000 Yes —0.000

No —447.256 No—-62.174 No —97.700 No —160.595 No —74.990
speed Limit (mph) <=30-5.693 <=30-2.939 <=30-7.844 <=30-1.151 <=30-0.498

>30-441.563 >30-59.235 >30 - 89.856 >30-159.444 >30-74.492
Parking Yes —0.000 Yes —0.000 Yes —0.000 Yes —0.000 Yes —0.000

No —447.256 No—-62.174 No —97.700 No —160.595 No —74.990
Parking Type None — 447.256 None — 62.174 None — 97.700 None — 160.595 None — 74.990
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5.1.2 Estimated Models

Documented in this section are the base condition models intended for use in the HSM predictive chapter
for urban and suburban arterials. Models developed for all sites representing the average site conditions
are found in Appendix A. These could be applied for network screening or other safety management tasks
where models for average site conditions are desired.

The model development process involved using the Ohio data to estimate a set of initial models, which
we subsequently validated where possible using a dataset that later became available from Minnesota.
Following the validation, we combined the two datasets to re-estimate the final models.

We developed the initial models using the same base conditions as those in the current HSM chapter for
urban and suburban arterials:

e No on-street parking

e No roadside fixed objects

e A 15-foot median width for divided roads
e No lighting

e No automated speed enforcement

The model predictions do not include intersection-related or animal crashes. The initial base condition
models were estimated for the following crash types:

e Total (TOT)

e Multiple-vehicle driveway related (MVD)

e Multiple-vehicle non-driveway related (MVN)

e Rear end (RE)

e Sideswipe same direction (SSD)

e Head-on plus sideswipe opposite direction (HO+SOD)
e Multiple-vehicle non-driveway other (MVN OTHER)

e Single-vehicle (SV)

e Nighttime (NIGHT)

To develop the base condition SPFs, we used only sites with no lighting or parking or automated
enforcement. Because no sites had zero roadside fixed objects and few divided roadways had a median
width of exactly 15 feet, these variables were included in the models only if considered appropriate for
that crash type and if the variable was statistically significant in the model and with the expected direction
of effect. For TOT, MVD, SV, and NIGHT crashes, the number of driveways was also directly included in
the models where warranted. If the variables for fixed objects or median width were included, they would
have been set to the base condition for application. The number of driveways in a segment should be
entered in those models where it is included—that is, there is no base condition for the number of
driveways in a segment.

Note that some parameter estimates are not statistically significant at the 95 percent confidence level but
are consistent across site types and/or crash types in the direction of effect and magnitude. In these cases,
we deemed the estimates acceptable.
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For TOT, MVD, and NIGHT crashes, parameter estimates for driveway count variables were inconsistent
in their levels of statistical significance and whether one driveway type was associated with fewer or more
crashes. In light of these findings, we considered two options. Option 1 used the same driveway definitions
and model form for considering driveways as in the current HSM chapter. Option 2 used the total driveway
density (driveways per mile) as an alternate variable. For TOT and NIGHT crashes, the model form for
Option 1 did not include length, as the inclusion of this variable created poor parameter estimates for the
relationship between average annual daily traffic (AADT) and driveways.

Table 5-5 to Table 5-16 document all initial base models developed using the Ohio data. The model form
is provided below each table for each crash type, along with the parameter estimates and standard error
(in brackets). For most site type/crash type combinations, a model was successfully calibrated; the tables
note where they were not.

5.1.3 Validation of Models

5.1.3.1 Initial model validation

We validated the initial models that used Ohio data with data from Minnesota covering the years 2010—
14. The sample size of crashes was not large enough, however, to validate all crash type models. Table
5-17 provides the segment length and crash type totals for the Minnesota base condition sites. For
validation, we calculated the calibration factors for each SPF using the current HSM procedure, which is
to calculate a simple ratio of the sum of observed crashes divided by the sum of predicted crashes prior
to calibration. We used “The Calibrator,” a spreadsheet tool developed by the Federal Highway
Administration (FHWA), for the validation exercise.
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Table 5-5: Total (TOT) for Base Conditions Option 1 (Urban/Suburban Arterial Segments)

_I_S;:; al bl a2 b2 e f g h j k | dispersion
U -10.4000 1.0210 -10.4800 0.6210 21.3300 5.6580 47.6600 26.5800 15.3400 7.0580 41.5400 0.6276
(1.6710) | (0.1885) | (1.6700) | (0.1872) | (13.8400) | (3.6670) | (18.6600) | (12.8800) | (18.0800) | (3.6000) | (20.4400) | (0.0471)
3T -11.8600 1.1340 | -11.8600 | 0.6005 33.5800 27.1700 28.6500 11.9700 25.6500 8.8680 -1.3600 0.6635
(4.5250) | (0.4928) | (3.7500) | (0.4125) | (21.3500) | (16.8600) | (22.4100) | (19.5800) | (28.1000) | (9.306) | (31.7500) | (0.1085)
au -13.1800 1.2010 -19.9900 1.5070 39.4400 26.8600 24.5800 28.9600 18.3300 13.7500 -2.1840 0.4030
(1.7260) | (0.1808) | (3.0130) | (0.3086) | (19.2000) | (13.6100) | (18.6800) | (16.1000) | (25.4600) | (8.4100) | (26.0900) | (0.0481)
4D -17.7500 1.8030 -20.7000 1.6240 24.0600 18.8500 23.9900 26.0800 15.5500 24.5300 18.9500 0.4158
(1.6420) | (0.1742) | (5.1830) | (0.5345) | (19.6500) | (15.5800) | (21.4900) | (23.1600) | (29.7900) | (16.5300) | (28.0700) | (0.0444)
5T -23.2900 2.2750 -11.4400 0.6492 37.0800 30.4900 34.1100 11.4100 2.3670 9.3020 0.0370 0.5754
(4.2650) | (0.4321) | (2.0540) | (0.2119) | (17.5300) | (14.6400) | (17.4900) | (19.9800) | (29.8500) (8.1580) (30.6800) (0.0749)
Crashes per year = exp(al)(AADT)b! +
exp(a2)(AADT)P%(e*MajComm+f*MinComm+g*Majlnd+h*Minlnd+j*MajRes+k*MinRes+* OtherDwy)
Dispersion is modeled as a constant
Table 5-6: Total (TOT) for Base Conditions Option 2 (Urban/Suburban Arterial Segments)
Site Type Alphal Betal Alpha2 Beta2 Beta3 Betad Beta5
U -6.0860 0.7511 -0.5430 -0.6938 n/a n/a n/a
(0.5892) (0.0670) (0.0919) (0.0820)
3T -10.2221 1.1790 -0.3919 -0.2997 n/a n/a n/a
(2.2704) (0.2454) (0.2694) (0.1898)
-14.6786 1.6114 -0.0053 -0.4560 0.0089
4U n/a n/a
(1.7359) (0.1817) (0.1939) (0.1231) (0.0030)
4D -11.9469 1.3272 -0.6179 -0.5502 0.0182 n/a -0.0054
(1.1524) (0.1179) (0.1560) (0.1208) (0.0050) (0.0032)
-11.6621 1.3068 -0.7018 -0.7834 0.0162
5T n/a n/a
(1.7458) (0.1767) (0.2128) (0.1490) (0.0096)

Crashes per year = (|ength)exp(AIphal)AADT(Betal) eXp(Beta3*dwydens+ +Betad*fodensity+Beta5*medwid)

The dispersion parameter is modeled as: Dispersion parameter = exp*P"#?(length)(®eta2)
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Table 5-7: Multiple-Vehicle Non-Driveway (MVN) for Base Conditions (Urban/Suburban Arterial Segments)

Site Type Alphal Betal Alpha2 Beta2 Beta3 Betad
U -12.0774 1.3440 -0.5669 -0.7129 0.0050 n/a
(0.7334) (0.0839) (0.1097) (0.0950) (0.0040)
37 -14.9031 1.6288 -0.2586 -0.4172 n/a n/a
(2.8001) (0.3017) (0.2970) (0.2068)
au -18.2639 1.9781 -0.1077 -0.6026 n/a n/a
(2.0110) (0.2096) (0.1961) (0.1195)
4D -16.2885 1.6796 -0.4327 -0.6772 0.0223 -0.0053
(1.4294) (0.1388) (0.1634) (0.1221) (0.0079) (0.0039)
ST -14.0029 1.5117 -0.6424 -0.8478 0.0208 n/a
(1.8790) (0.1899) (0.2155) (0.1544) (0.0104)
Crashes per year = (length)exp(AIphal)AADT(Betal) exp(Beta3*fodensity+Beta4*medwid)
The dispersion parameter is modeled as: Dispersion parameter = expP"3?(length)(®eta2)
Table 5-8: Rear End (RE) for Base Conditions (Urban/Suburban Arterial Segments)
Site Type Alphal Betal Alpha2 Beta2 Beta3 Betad
U -16.9150 1.8217 -0.2968 -0.6680 n/a n/a
(1.0174) (0.1136) (0.1320) (0.1181)
37 -19.8717 2.1175 0.2335 -0.2750 n/a n/a
(3.7237) (0.4000) (0.2991) (0.2398)
au -20.3644 2.1262 0.1069 -0.6057 n/a n/a
(2.3837) (0.2471) (0.2222) (0.1436)
4D -23.9555 2.4546 0.1034 -0.5155 n/a n/a
(2.0377) (0.2086) (0.1749) (0.1390)
ST -18.0852 1.9245 -0.1383 -0.6228 n/a n/a
(2.3200) (0.2344) (0.2344) (0.1740)

Crashes per year = (Iength)exp(AIphal)AADT(Betal) eXp(Beta3*fodensity+Beta4*medwid)

The dispersion parameter is modeled as: Dispersion parameter = exp“P"#)(length)(®et22)
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Table 5-9: Sideswipe-Same-Direction (SSD) for Base Conditions (Urban/Suburban Arterial Segments)

Site Type Alphal Betal Alpha2 Beta2 Beta3 Betad

U -14.9454 1.3668 0.3567 -0.3906 n/a n/a
(2.0400) (0.2269) (0.3159) (0.3335)

3T -12.7872 1.0883 -1.0868 -1.0000 n/a n/a
(6.3104) (0.6755) (1.1962) (n/a)

4uU -21.7028 2.1713 0.0021 -0.7319 n/a n/a
(3.1316) (0.3240) (0.3140) (0.2117)

4D -10.8456 1.0164 -0.4498 -0.6528 n/a n/a
(1.6374) (0.1676) (0.2638) (0.2570)

5T -13.8498 1.3813 -0.4941 -0.3073 n/a n/a
(2.4777) (0.2499) (0.3007) (0.2718)

Crashes per year = (length)exp(AIphal)AADT(Betal) eXp(Beta3*fodensity+Beta4*medwid)
The dispersion parameter is modeled as: Dispersion parameter = exp“P"#)(length)(®et22)

Table 5-10: Head-On + Sideswipe-Opposite-Direction (HO+SOD) for Base Conditions (Urban/Suburban Arterial Segments)

Site Type Alphal Betal Alpha2 Beta2 Beta3 Betad

U -8.2884 0.7028 0.0027 -0.4152 n/a n/a
(1.3195) (0.1488) (0.2386) (0.3140)

37 -15.5567 1.4489 -0.5288 -2.8313 n/a n/a
(6.9161) (0.7412) (1.5562) (1.1828)

4U No model calibrated

4D -10.7128 0.7981 0.0622 -1.2091 n/a n/a
(3.3027) (0.3360) (0.7457) (0.6002)

ST -10.3196 0.8767 -0.4212 -0.0014 n/a n/a
(3.6247) (0.3658) (0.5618) (0.7216)

Crashes per year = (Iength)exp(AIphal)AADT(Betal) eXp(Beta3*fodensity+Beta4*medwid)
The dispersion parameter is modeled as: Dispersion parameter = exp®P"3?(length)(®eta2)
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Table 5-11: Multiple-Vehicle Non-Driveway Other (MVN OTHER) for Base Conditions (Urban/Suburban Arterial Segments)

Site Type Alphal Betal Alpha2 Beta2 Beta3 Betad
U -9.9584 0.8413 -0.5762 -1.4801 0.0153 n/a
(1.2413) (0.1391) (0.3268) (0.2629) (0.0063)
37 -8.9257 0.8182 -1.0071 -0.1620 n/a n/a
(3.4592) (0.3723) (0.7971) (0.7198)
au -16.1223 1.3978 0.4561 -0.3153 0.0277 n/a
(3.1953) (0.3222) (0.3452) (0.3047) (0.0117)
4D -11.2681 0.9584 -0.5306 -0.7167 0.0199 -0.0109
(2.1597) (0.2055) (0.3606) (0.3160) (0.0111) (0.0065)
ST -13.4898 1.1930 -0.6420 -0.6885 0.0221 n/a
(2.9205) (0.2901) (0.4135) (0.4026) (0.0121)
Crashes per year = (length)exp(AIphal)AADT(Betal) exp(Beta3*fodensity+Beta4*medwid)
The dispersion parameter is modeled as: Dispersion parameter = expP"3?(length)(®eta2)
Table 5-12: Single-Vehicle (SV) for Base Conditions (Urban/Suburban Arterial Segments)
Site Type Alphal ‘ Betal ‘ Alpha2 Beta2 Beta3 Betad
2U No model calibrated
37 -4.0996 0.2682 0.2009 0.5802 n/a n/a
(3.7906) (0.4107) (0.5641) (0.7384)
au -7.5399 0.6261 -0.5967 -1.1117 n/a n/a
(2.8850) (0.3014) (0.6644) (0.5442)
4D -7.6387 0.6832 -0.7085 -0.5342 n/a n/a
(1.4666) (0.1514) (0.2950) (0.3962)
ST -2.8316 0.1865 -0.0347 -0.7949 n/a n/a
(3.1881) (0.3242) (0.3416) (0.3089)

Crashes per year = (Iength)exp(AIphal)AADT(Betal) eXp(Beta3*fodensity+Beta4*medwid)

The dispersion parameter is modeled as: Dispersion parameter = exp*P"3?(length)(®eta2
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Table 5-13: Nighttime (NIGHT) for Base Conditions (Option 1) (Urban/Suburban Arterial Segments)
Site Type al bl a2 b2 e f g h i k | dispersion
U -8.184 0.5827 | -9.2390 | 0.2255 19.360 3.3640 | 50.5000 | 31.4600 | 15.3100 | 10.1500 | 32.5600 | 0.6245
(1.176) | (0.131) | (1.456) (0.161) | (17.170) | (4.3750) | (21.560) | (16.610) | (22.270) | (5.9840) | (22.720) | (0.0938)
3T No model calibrated
4U No model
4D -18.98 1.720 -20.150 1.3740 30.350 9.9470 19.8100 | 13.1600 | 14.5500 | 27.2200 | 28.7600 | 0.4411
(2.427) | (0.252) | (6.542) (0.664) | (20.480) | (13.090) | (20.280) | (22.960) | (30.460) | (17.700) |(28.4000) | (0.0923)
5T No model calibrated
Crashes per year = exp(al)(AADT)®! + exp(a2)(AADT)P?(e*MajComm+f*MinComm+g*Majlnd+h*MinInd+j*MajRes+k*MinRes+|* OtherDwy)
Dispersion is modeled as a constant
Table 5-14: Nighttime (NIGHT) for Base Conditions (Option 2) (Urban/Suburban Arterial Segments)
Site Type Alphal Betal Alpha2 Beta2 Beta3 Betad Beta5
U -4.5003 0.3562 -0.2500 -0.7635 n/a n/a n/a
(0.9316) (0.1060) (0.1657) (0.2024)
3T -9.8418 0.8976 -0.2694 -0.3113 n/a n/a n/a
(3.7771) (0.4063) (0.6161) (0.4739)
au -15.4899 1.5044 -0.1265 -0.7128 n/a n/a n/a
(2.7560) (0.2859) (0.3565) (0.2904)
4D -10.5500 1.0089 -0.5876 -0.5028 n/a n/a -0.0119
(1.7363) (0.1750) (0.2844) (0.2706) (0.0051)
5T -12.0353 1.1821 -0.8642 -0.7848 n/a n/a n/a
(2.2854) (0.2302) (0.3749) (0.2764)

Crashes per year = (Iength)exp(AIphal)AADT(Betal) exp(Beta3*dwydens+ +Beta4d*fodensity+Beta5*medwid)

The dispersion parameter is modeled as: Dispersion parameter = exp“P"#)(length)(®et22)
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Table 5-15: Multi-Vehicle Driveway (MVD) for Base Conditions (Option 1) (Urban/Suburban Arterial Segments)

Site Type Alphal Betal e f g h j k | dispersion
U -14.1100 0.7840 41.2600 18.2400 29.5900 21.2900 17.0300 6.6180 24.9200 0.8656
(3.6350) | (0.3716) | (18.2600) | (9.5630) | (18.4800) | (12.1000) | (14.9600) | (4.0100) | (20.2400) | (0.1913)
3T -11.1600 0.4170 33.5600 25.6400 37.4600 15.9200 32.1400 9.1550 -2.9530 0.5281
(4.4080) | (0.4767) | (18.0600) | (14.0800) | (19.5500) | (13.9300) | (24.3300) | (7.0810) | (30.8800) | (0.1680)
4U No model calibrated
4D -15.8200 0.8799 32.5700 19.4700 19.4100 30.0500 10.8000 20.6400 32.4000 0.4986
(3.8660) | (0.3761) | (17.3800) | (11.5200) | (15.9700) | (16.8000) | (28.9100) | (12.8300) | (18.5600) | (0.1910)
5T -13.7000 0.7159 0.4131 30.6700 30.7600 15.1000 3.1770 4.2310 -0.2437 0.7528
(2.4940) | (0.2525) | (17.3400) | (14.5400) | (17.5500) | (20.9200) | (29.4200) | (3.9390) | (30.9100) | (0.1609)
Crashes/year =exp(Alphal)AADT®%(e* MajComm+f*MinComm+g*Majlnd+h*MinInd+j*MajRes+k*MinRes+*OtherDwy)
Dispersion is held constant.
Table 5-16: Multi-Vehicle Driveway (MVD) for Base Conditions (Option 2) (Urban/Suburban Arterial Segments)
Site Type Alphal Betal Alpha2 Beta2 Beta3 Betad Beta5
-12.6511 1.1705 0.1267 -0.7488 0.0165
2U n/a n/a
(1.4075) (0.1567) (0.1841) (0.1874) (0.0040)
3T -8.9552 0.8526 0.5432 -0.1579 0.0022 n/a n/a
(4.2685) (0.4686) (0.3483) (0.3117) (0.0076)
au -18.4926 1.7592 0.3468 -0.6666 0.0199 n/a n/a
(3.2011) (0.3312) (0.2954) (0.2208) (0.0057)
4D -11.0400 0.9786 0.4003 -0.7067 0.0567 n/a -0.0558
(3.3545) (0.3428) (0.3425) (0.2770) (0.0113) (0.0145)
5T -11.7476 1.0318 -0.5609 -1.1911 0.0131 0.0298 n/a
(2.5826) (0.2599) (0.2950) (0.2496) (0.0070) (0.0148)

Crashes per year = (Iength)exp(AIphal)AADT(Betal) exp(Beta3*dwydens+ +Beta4d*fodensity+Beta5*medwid)

The dispersion parameter is modeled as: Dispersion parameter = exp®P"3?(length)(®eta2)
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Table 5-17: MN Segment Length and Crash Type Totals for 5 Year Period for Base Condition Sites (Urban/Suburban Arterial

Segments)
- Multi- Multi- .
Facility No. of No.. of Average TOT Veh Rear End Head-On $SD Veh Slng-le- Night
Type segments miles AADT . +SOD Vehicle
Driveway Other
2U 236 33.86 9,511 320 21 118 25 16 36 115 69
3T 63 7.23 10,841 76 4 39 6 7 17 7 18
4D 92 14.95 22,150 308 4 182 15 31 25 57 63
4U 113 11.72 10,386 160 15 53 9 24 41 22 29
5T 15 1.60 15,753 20 2 6 2 2 6 2 3
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Table 5-18 to Table 5-21 provide goodness-of-fit measures for the initial base condition models validated
with the Minnesota data. The cumulative residuals (CURE) plot measures are for CURE plots using the
predicted number of crashes on the x-axis. Only site/crash types with a reasonable number of crashes
(approximately 100) are included.

The interpretation of the goodness-of-fit measures is challenging, since the implications can vary
significantly depending on the measure used. Some results are not promising but not surprising, and quite
typical when assessing the transferability of SPFs to other jurisdictions. In general, the calibrated
dispersion parameters are less than 2, indicating a reasonable prediction accuracy, and the values of MAD
are not unreasonable. The modified R? and CURE plot statistics are more inconsistent across site and crash
types. Note, though, that such biases within ranges of model predictions are not uncommon. On the
whole, we conclude that the validation exercise does not provide evidence that the chosen model forms
are not working.

For the models for total crashes where we investigated two options for handling driveway counts, the
results indicate that Option 2 (summing all driveways together and dividing by segment length) was more
successful overall. We applied this model form for developing the final models.

Table 5-18: Validation of Initial 2U Base Condition Models

Calibration CURE
Crash Type Observed Factor Dispersion | MAD Modified max CURE %
Crashes (coefficient of R? dev dev
variation)
TOT Option 1 320 1.02 (0.15) 1.27 1.33 0.28 65.52 71
TOT Option 2 320 0.92 (0.14) 1.08 1.31 0.04 58.83 16
MVN 195 0.64 (0.19) 1.41 0.96 0.00 95.17 97
RE 118 0.71(0.23) 1.82 0.67 0.00 68.20 96
Table 5-19: Validation of 3T Base Condition Models
Calibration B CURE .
Crash Type Observed Fa_ct.or Dispersion | MAD MOdlzfled max CURE %
Crashes (coefficient of R dev dev
variation)
TOT Option 1 76 1.34(0.18) 0.46 0.97 0.51 29.49 86
TOT Option 2 76 1.03 (0.17) 0.34 0.97 0.61 26.55 89
MVN 69 1.50(0.17) 0.32 0.87 0.64 23.29 89
Table 5-20: Validation of 4D Base Condition Models
Calibration . CURE )
Crash Type Observed Fa_ct.or Dispersion | MAD MOdlzfled max CURE %
Crashes (coefficient of R dev dev
variation)
TOT Option 1 308 2.07 (0.27) 1.21 3.02 0.28 103.08 86
TOT Option 2 308 1.13(0.22) 0.75 2.52 0.40 88.49 92
MVN 253 1.07 (0.30) 1.16 2.56 0.10 63.49 85
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Table 5-21: Validation of 4U Base Condition Models

Calibration CURE
Crash Type Observed Factor Dispersion | MAD Modified max CURE %
Crashes (coefficient of R? dev dev
variation)
TOT Option 1 160 1.57 (0.25) 1.79 1.37 0.10 66.36 93
TOT Option 2 160 1.54 (0.21) 1.17 1.34 0.02 72.04 95
MVN 127 2.21(0.24) 1.46 1.20 0.00 61.90 96

5.1.3.2 Final Models
Given the reasonable results of the validation exercise and the paucity of the initial model estimation
data, we re-estimated all base condition models using the combined Ohio and Minnesota base condition
sites. We re-estimated all initial crash type models, as well as estimating models by crash severity (all
crash types combined).

As with the initial base model development, we used only sites with no lighting, parking, or automated
enforcement to develop the base condition SPFs. Because no sites had zero roadside fixed objects and
few divided roadways had a median width of exactly 15 feet, we included these variables in the models
only if we considered them appropriate for the crash type, and if the variable was statistically significant
in the model and with the expected direction of effect. If we included a variable, we would set it to the
base condition for application. We attempted to include driveway density in all models developed,
acknowledging that driveway presence might affect different crash types in different ways. We entered
the number of driveways in a segment in those models in which it was included—that is, where there was
no base condition for the number of driveways in a segment.

Final base condition models were calibrated for the following crash types (as defined previously):

e TOT e KA e SSD e SV
e KABC e MVN e HO+SOD e NIGHT
e KAB e RE e MVN OTHER e MVD

Table 5-22 provides the ranges of the AADT and the number of driveways per mile (DWYDENS) variables
by site type for the combined Ohio and Minnesota data that we used to estimate the base condition
models. Table 5-23 to Table 5-34 show the estimated coefficients for the final models.

Table 5-22: Range of Base Model Variables for Final Urban/Suburban Segment Models

Site Type AADT DWYDENS

2U 100 to 23,028 0.00 to 154.76
3T 1,356 to 23,780 0.00 to 150.00
4U 1,150t0 41,418 0.00 to 320.00
4D 256 t0 52,830 0.00to0 170.21
5T 5,356 to 50,553 0.00to0 115.38
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Table 5-23: Total for Base Conditions Combined Data (Urban/Suburban Arterial Segments)

Site Type | Alphal Ohio Betal Alpha2 Beta2 Beta3 Betad Betab5

2U -6.2667 0.0275 0.7566 | -0.5377 | -0.5136 | 0.0038 - -
(0.5588) | (0.1142) | (0.0605) | (0.0933) | (0.0707) | (0.0019)

3T -11.6510 | 0.0161 1.3322 | -0.4150 | -0.1955 - - -
(2.0472) | (0.2024) | (0.2182) | (0.2627) | (0.1712)

4U -13.9903 | -0.5241 1.5943 0.0671 | -0.2778 | 0.0087 - -
(1.5040) | (0.1935) | (0.1624) | (0.1891) | (0.1056) | (0.0023)

4D -11.0228 | -0.1656 1.2544 | -0.6630 | -0.4471 | 0.0168 - -0.0072
(1.0556) | (0.1557) | (0.1043) | (0.1534) | (0.1051) | (0.0045) (0.0029)

5T -12.0014 | 0.6171 1.2897 | -0.7017 | -0.7813 - 0.0132 -
(1.7516) | (0.5269) | (0.1764) | (0.2111) | (0.1451) (0.0085)

Crashes per year = (|ength)exp(AIpha1+Ohio)AADT(Beta1) eXl:)(Beta3*dwydens+ +Betad*fodensity+Beta5*medwid)

The dispersion parameter is modeled as: Dispersion parameter = exp“P"#)(length)(®et22)

Table 5-24: KABC for Base Conditions Combined Data (Urban/Suburban Arterial Segments)

Site Type Alphal Ohio Betal Alpha2 Beta2 Beta3 Betad Beta5

2U -5.7643 | -0.0920 | 0.6064 | -0.4355 | -0.5853 - - -
(0.6944) | (0.1450) | (0.0754) | (0.1201) | (0.0992)

3T -13.1435 | -0.2039 1.3799 | -0.1284 | -0.0128 - - -
(2.8117) | (0.2670) | (0.3002) | (0.3599) | (0.2931)

4U -15.1227 | -0.5914 1.6901 -0.5771 -0.6791 0.0046 -0.0184 -
(1.8518) | (0.2498) | (0.1997) | (0.2726) | (0.1551) | (0.0029) | (0.0054)

4D -10.6728 | -0.3482 1.1237 | -0.7472 | -0.5053 | 0.0103 - -0.0110
(1.2521) | (0.1812) | (0.1230) | (0.2009) | (0.1587) | (0.0055) (0.0037)

5T -13.3013 | 0.2684 1.3873 | -0.7945 | -0.8925 - - -
(1.9432) | (0.6352) | (0.1944) | (0.2605) | (0.1924)

Crashes per year = (|ength)exp(AIpha1+Ohio)AADT(Beta1) eXl:)(Beta3*dwydens+ +Betad*fodensity+Beta5*medwid)

The dispersion parameter is modeled as: Dispersion parameter = exp“P"#)(length)(®et2)

Table 5-25: KAB for Base Conditions Combined Data (Urban/Suburban Arterial Segments)

Site Type | Alphal Ohio Betal Alpha2 Beta2 Beta3 Betad Beta5

2U -5.6569 | 0.5840 0.4691 | -0.2961 | -0.6501 - - -
(0.8238) | (0.2042) | (0.0883) | (0.1357) | (0.1446)

3T -14.3398 | -0.0055 1.4226 | -0.2135 | 0.0325 - - -
(3.5217) | (0.3474) | (0.3751) | (0.4482) | (0.4309)

4u -15.5357 | 0.0737 1.5342 | -0.4129 | -0.6175 - - -
(2.2757) | (0.3448) | (0.2437) | (0.3578) | (0.2534)

4D -11.2921 | 0.1675 1.0759 | -0.8647 | -0.6098 | 0.0092 - -0.0074
(1.4475) | (0.2328) | (0.1405) | (0.2650) | (0.2221) | (0.0062) (0.0042)

5T -14.9040 | 0.9934 1.4140 | -0.6481 | -0.6560 - - -
(2.3332) | (0.8272) | (0.2278) | (0.2976) | (0.2486)

Crashes per year = (|ength)exp(AIpha1+Ohio)AADT(Betal) eXp(BetaS*dwydens+ +Betad*fodensity+Beta5*medwid)

The dispersion parameter is modeled as: Dispersion parameter = exp“P"3)(length)®et2)
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For KA crashes, no model was calibrated for four-lane divided (4D) or four-lane plus two-way left-turn-
lane (5T) sites. For these, the appropriate proportion of KA crashes could be applied as a multiplicative
factor with the TOT, KABC, or KAB model. Alternatively, the KA model for average conditions presented in
the appendices could be applied.

Table 5-26: KA for Base Conditions Combined Data (Urban/Suburban Arterial Segments)

Site Type Alphal Ohio Betal Alpha2 Beta2 Beta3 Betad Beta5
2U -6.1199 | 0.6025 | 0.3677 | -0.2131 | -0.7058

(1.3024) | (0.3516) | (0.1387) | (0.2868) | (0.3038) i i i
3T -20.3972 | 0.4340 | 1.8815 | 0.7946 | -0.5334

(7.7770) | (0.8545) | (0.8258) | (0.6013) | (0.6767) i i i
4u -17.4579 | 1.4088 | 1.4692 | -1.3176 | -1.7818

(3.8002) | (1.1221) | (0.4016) | (1.2690) | (0.8893) i i )
4D - - - - - - - -
5T - - - - - - - -

Crashes per year = (|ength)exp(AIpha1+Ohio)AADT(Beta1) eXl:)(Beta3*dwydens+ +Betad*fodensity+Beta5*medwid)
The dispersion parameter is modeled as: Dispersion parameter = exp“P"3)(length)(®et2)

Table 5-27: MVN for Base Conditions Combined Data (Urban/Suburban Arterial Segments)

Site Type | Alphal Ohio Betal Alpha2 Beta2 Beta3 Betad Betas
2U -13.1934 | 0.0825 | 1.4403 | -0.6182 | -0.5753 | 0.0069
(0.7523) | (0.1329) | (0.0802) | (0.1179) | (0.0849) | (0.0020) i i
3T -15.4009 | -0.3760 | 1.7234 | -0.2706 | -0.2234
(2.4601) | (0.2229) | (0.2626) | (0.2918) | (0.1849) i i i
4U -16.3961 | -0.8820 | 1.8756 | -0.0044 | -0.3995
(1.7182) | (0.2158) | (0.1866) | (0.1954) | (0.1068) i i i
4D -14.9113 | -0.2680 | 1.5965 | -0.4376 | -0.4917 0.0112 | -0.0059
(1.3107) | (0.1919) | (0.1269) | (0.1604) | (0.1092) i (0.0046) | (0.0035)
5T -15.6856 | 0.6385 | 1.6077 | -0.6279 | -0.8216 0.0177
(1.9567) | (0.5866) | (0.1925) | (0.2182) | (0.1552) i (0.0096) i

Crashes per year = (|ength)eXp(AIpha1+0hio)AADT(Beta1) exp(Beta3*dwydens+ +Betad*fodensity+Beta5*medwid)
The dispersion parameter is modeled as: Dispersion parameter = exp“P"3)(length)(®et2)

Table 5-28: RE for Base Conditions Combined Data (Urban/Suburban Arterial Segments)

Site Type Alphal Ohio Betal Alpha2 Beta2 Beta3 Betad Beta5

2U -17.2835 | 0.1802 1.8433 -0.2692 -0.5029 - - -
(1.0139) | (0.1628) | (0.1077) | (0.1303) | (0.0957)

3T -19.7152 | -0.2954 2.1326 0.1870 -0.2297 - - -
(3.3256) | (0.2896) | (0.3546) | (0.2908) | (0.1936)

4U -19.9318 | -0.6741 2.1519 0.1871 -0.3413 - - -
(2.0767) | (0.2526) | (0.2226) | (0.2237) | (0.1299)

4D -22.5573 | -0.1243 2.3241 0.0222 -0.5113 - - -
(1.8509) | (0.2366) | (0.1842) | (0.1695) | (0.1182)

5T -18.8071 | 0.7287 1.9239 -0.1217 -0.5654 - - -
(2.3175) | (0.6390) | (0.2318) | (0.2342) | (0.1705)

Crashes per year = (|ength)eXp(AIpha1+0hio)AADT(Beta1) exp(Beta3*dwydens+ +Beta4*fodensity+Beta5*medwid)
The dispersion parameter is modeled as: Dispersion parameter = exp“P"3)(length)(®et2)
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For SSD crashes, a base condition model was not successfully calibrated for 3T sites. We calibrated the
recommended model for 3T sites by using all sites and representing average conditions.

Table 5-29: SSD for Base Conditions Combined Data (Urban/Suburban Arterial Segments)

Site Type Alphal Ohio Betal Alpha2 Beta2 Beta3 Betad Beta5

2U -14.1461 | -0.1494 1.2943 0.4303 -0.4248 - - -
(1.9684) | (0.3208) | (0.2097) | (0.2930) | (0.2587)

3T -14.4915 | -0.7704 1.3985 -0.5623 -0.7902 - - -
(3.2424) | (0.3049) | (0.3481) | (0.5474) | (0.3238)

4U -20.2134 | -0.7956 2.0999 0.0841 -0.5012 - - -
(2.7017) | (0.3278) | (0.2903) | (0.3067) | (0.1882)

4D -10.1287 | 0.1939 0.9255 -0.3942 0 - - -
(1.5856) | (0.2382) | (0.1557) | (0.2456)

5T -14.7441 | 0.7764 1.3932 | -0.4866 | -0.2846 - - -
(2.5240) | (0.7739) | (0.2492) | (0.3002) | (0.2685)

Crashes per year = (|ength)eXp(AIpha1+0hio)AADT(Beta1) exp(Beta3*dwydens+ +Beta4*fodensity+Beta5*medwid)

The dispersion parameter is modeled as: Dispersion parameter = exp“P"#)(length)(®et22)

For SOD+HO crashes, a base condition model was not successfully calibrated for 4D sites. We calibrated
the recommended model for 4D sites by using all sites and representing average conditions.

Table 5-30: SOD+HO for Base Conditions Combined Data (Urban/Suburban Arterial Segments)

Site Type Alphal Ohio Betal Alpha2 Beta2 Beta3 Betad Beta5

2U -8.1147 -0.0461 0.6884 -0.0349 -0.4037 - - -
(1.2688) | (0.2454) | (0.1363) | (0.2264) | (0.2497)

3T -18.2308 | -0.7286 | 1.7639 | -0.6224 | 0.4519 - - -
(6.0061) | (0.4845) | (0.6379) | (1.1807) | (1.2972)

4U -12.2573 | -0.4853 | 1.1343 | -0.4689 | -0.4739 - - -
(2.8768) | (0.4100) | (0.3100) | (0.5951) | (0.4805)

4D -8.5679 | -1.0946 | 0.7000 | -0.2926 | -0.5178 - - -
(2.0962) | (0.2278) | (0.2100) | (0.5993) | (0.3654)

5T -9.6385 | -0.5459 | 0.8631 | -0.4456 0 - - -
(3.4905) | (0.7628) | (0.3551) | (0.5536)

Crashes per year = (|ength)exp(AIpha1+Ohio)AADT(Beta1) eXl:)(Beta3*dwydens+ +Betad*fodensity+Beta5*medwid)

The dispersion parameter is modeled as: Dispersion parameter = exp“'P"#)(length)(®et22)
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Table 5-31: MVN OTHER for Base Conditions Combined Data (Urban/Suburban Arterial

Segments)

Site Type | Alphal Ohio Betal Alpha2 Beta2 Beta3 Betad Beta5

2U -11.8140 | 0.4828 1.0308 -0.2403 -1.0218 0.0125 - -
(1.2722) | (0.2885) | (0.1330) | (0.2129) | (0.1557) | (0.0043)

3T -9.9762 | -0.5783 | 0.9931 | -1.1242 | 0.0000 - - -
(3.1817) | (0.2896) | (0.3402) | (0.7883) (n/a)

4U -12.9084 | -1.1735 1.3778 0.4001 -0.5018 - - -
(2.5712) | (0.3325) | (0.2820) | (0.2544) | (0.1620)

4D -9.7538 | -0.0008 | 0.8329 | -0.7641 | -0.4188 | 0.0228 | -0.0156 -
(1.8069) | (0.2730) | (0.1708) | (0.3445) | (0.2943) | (0.0059) | (0.0055)

5T -10.7916 | 0.3563 0.9049 | -0.6876 | -1.0932 | 0.0351 - -
(2.6197) | (0.8276) | (0.2556) | (0.3087) | (0.2338) | (0.0121)

Crashes per year = (|ength)exp(AIpha1+Ohio)AADT(Betal) exp(Beta3*dwydens+ +Betad*fodensity+Beta5*medwid)

The dispersion parameter is modeled as: Dispersion parameter = exp“P"#)(length)(®et22)

For SV crashes, a base condition model was not successfully calibrated for 2U sites, nor was an SV model
calibrated for average condition sites. For 2U, we recommend applying the total crash model, with the
proportion of SV crashes applied as a multiplier.

Table 5-32: SV for Base Conditions Combined Data (Urban/Suburban Arterial Segments)

Site Type | Alphal | Ohio | Betal | Alpha2 | Beta2 | Beta3 | Betad | Beta5

2U Use Total model with proportion of SV crashes applied

3T -5.8853 0.5923 0.4605 | -0.1893 | -0.2883 - - -
(3.1236) | (0.4389) | (0.3329) | (0.4213) | (0.3431)

4U -8.0865 | -0.3745 0.7804 | -0.1446 | -0.2903 - - -
(2.0681) | (0.2859) | (0.2230) | (0.3820) | (0.2575)

4D -6.4017 | 0.0008 0.6158 | -0.7961 | -0.4715 - - -
(1.1787) | (0.1957) | (0.1174) | (0.2256) | (0.2323)

5T -2.5500 1.0495 0.1118 | -0.2065 | -0.5637 - - -
(2.5756) | (0.8577) | (0.2599) | (0.2853) | (0.2571)

Crashes per year = (|ength)exp(AIpha1+Ohio)AADT(Beta1) exp(Beta3*dwydens+ +Betad*fodensity+Beta5*medwid)

The dispersion parameter is modeled as: Dispersion parameter = exp®P"3?(length)(®eta2)

Copyright National Academy of Sciences. All rights reserved.
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Table 5-33: Nighttime for Base Conditions Combined Data (Urban/Suburban Arterial

Segments)

Site Type | Alphal Ohio Betal Alpha2 Beta2 Beta3 Betad Beta5

2U -3.5624 -0.4718 0.3012 -0.2936 -0.5305 - - -
(0.8332) | (0.1697) | (0.0913) | (0.1619) | (0.1519)

3T -11.6068 | -0.8093 1.1744 | -0.0771 | -0.1357 - - -
(3.6625) | (0.3293) | (0.3908) | (0.5609) | (0.3601)

4Uu -15.2872 | -1.0078 1.5836 0.0294 | -0.3047 - - -
(2.4074) | (0.2853) | (0.2584) | (0.3401) | (0.2428)

4D -9.3164 | -0.5921 | 0.9517 | -0.6972 | -0.3866 | -0.0154 - -
(1.5701) | (0.2011) | (0.1531) | (0.2836) | (0.2297) | (0.0047)

5T -12.0075 | 0.2310 1.1560 | -0.8875 | -0.7748 - - -
(2.2805) | (0.7202) | (0.2267) | (0.3773) | (0.2775)

Crashes per year = (|ength)exp(AIpha1+Ohio)AADT(Beta1) eXp(Beta3*dwydens+ +Betad*fodensity+Beta5*medwid)

The dispersion parameter is modeled as: Dispersion parameter = exp“P"#)(length)(®et22)

Table 5-34: MVD for Base Conditions Combined Data (Urban/Suburban Arterial Segments)

Site Type Alphal Ohio Betal Alpha2 Beta2 Beta3 Betad Beta5

2U -13.6423 | 0.5823 1.2126 0.1486 -0.7353 0.0177 - -
(1.4577) | (0.2970) | (0.1530) | (0.1816) | (0.1621) | (0.0038)

3T -12.6716 1.2663 1.1270 0.5494 -0.1044 - - -
(4.2048) | (0.5717) | (0.4444) | (0.3448) | (0.3036)

4U -18.7490 | 0.0410 1.7873 0.3580 -0.5745 0.0183 - -
(2.9281) | (0.4100) | (0.3133) | (0.2914) | (0.2016) | (0.0049)

4D -11.5730 | 0.3881 0.9784 0.3945 -0.7538 0.0562 -0.0472 -
(3.3464) | (0.6447) | (0.3263) | (0.3450) | (0.2827) | (0.0112) | (0.0130)

5T -12.4484 1.4306 1.0472 -0.4074 | -1.0384 0.0186 - -
(2.7823) | (1.0530) | (0.2702) | (0.2826) | (0.2437) | (0.0063)

Crashes per year = (|ength)exp(AIpha1+Ohio)AADT(Beta1) eXl:)(Beta3*dwydens+ +Betad*fodensity+Beta5*medwid)

The dispersion parameter is modeled as: Dispersion parameter = exp“'P"#)(length)®et2)

Copyright National Academy of Sciences. All rights reserved.
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5.2 INTERSECTIONS

5.2.1 Estimation Data

Models have been estimated for four-leg signal-controlled (4SG) intersections, three-leg signal-controlled
(3SG) intersections, four-leg stop-controlled (4ST) intersections, and three-leg stop-controlled (3ST)
intersections on urban and suburban arterials, based on Ohio data for 2009-11. We estimated three sets
of models:

e Average condition models use data from all the sites but use only AADT as the independent
variable.

e Base condition models use data only from base conditions and use only AADT as the independent
variable.

o Fully specified models use AADT and other intersection characteristics as independent variables.

Only the base condition models are reported here; for the average condition models, see Appendix A.

Ohio DOT provided the traffic volume, crash data, and other site characteristics they had compiled to
calibrate the prediction models from the HSM. While the major roads leading to the intersections were
predominantly state maintained, the minor roads often were not. For the quality of minor-road AADT,
Ohio DOT provided two confidence levels. If the minor-road AADT was based on actual counts, the
confidence level was considered high. If it was based on the functional class, then the confidence level
was considered medium. To have a sufficient sample of sites for estimating the prediction models, we
included intersections with both high and medium confidence levels for the minor-road AADT.

We estimated models for the following crash types:

e Total (TOT)

e Same direction (SD)

e Opposite direction (OD)
e Intersecting direction (ID)
e Single vehicle (SV)

For these individual crash types, we estimated models for KABCO, KABC, KAB, and KA severity levels.
Models for pedestrian and bicycle crashes were not estimated because pedestrian and bicycle volumes
were lacking at most of the intersections.

Table 5-35 shows the distribution of categorical variables (for example, number of turn lanes) for the four
intersection types. Table 5-36 to Table 5-39 show the summary statistics for the data used for estimating
the prediction models, which are based on all three years of data for each site.

In setting base conditions, we sought to use the same conditions as in the current HSM chapter for urban
and suburban arterial road intersections.

For signal-controlled intersections, we defined the base conditions as follows:

e No left-turn lanes
e No right-turn lanes
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e No right-turn-on-red prohibition (that is, right-turn-on-red is allowed on all legs)

e Nored light cameras

e Lighting is present. (Note: This is different from what is currently in the HSM. As shown in Table
5-35, most of the signal-controlled intersections had lighting, which left us with an insufficient
sample of intersections without lighting.)

For stop-controlled intersections, we defined the base conditions as follows:

e No left-turn lanes

e Noright-turn lanes

e No lighting

e No schools within 1,000 feet

e No bus stops within 1,000 feet

¢ No alcohol sales establishments within 1,000 feet

84
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Table 5-35: Distribution of categorical variables by intersection type (urban/suburban

Copyright National Academy of Sciences. All rights reserved.

arterials)
Variable 3SG 3ST 4SG 4sT
0 485 | 7214 803 | 2342
1 301 315 210 74
Number of legs with left-turn lanes 2 189 48 692 106
3 0 0 323 11
4 0 0 734 2
0 721 | 7470 1985 | 2466
1 204 101 430 59
Number of legs with right-turn lanes 2 50 6 243 8
3 0 0 68 2
4 0 0 36 0
0 619 | 7282 998 | 2374
Number of legs with left-turn lanes on major road | 1 323 282 331 69
2 33 13 1433 92
0 865 | 7523 | 2286 | 2496
Number of legs with right-turn lanes on major road | 1 105 54 359 38
2 5 0 117 1
0 703 | 7481 1396 | 2474
Number of legs with left-turn lanes on minorroad | 1 254 89 430 48
2 18 7 936 13
0 792 | 7518 2221 | 2498
Number of legs with right-turn lanes on minor road | 1 177 59 411 33
2 6 0 130 4
L Not Present 91 | 2407 278 680
Lighting
Present 884 | 5170 2484 | 1855
0 852 | 7574 | 2454 | 2532
S 1 84 0 98 0
rNel:jmber of approaches prohibiting right-turn-on- 5 39 0 79 5
3 0 0 35 0
4 0 0 9% 0
. Not Present 963 | 7576 | 2708 | 2535
Red light camera
Present 12 0 54 0
Schools within 1000 feet Not Present 849 | 6961 | 2420 | 2289
Present 126 616 342 246
. L 0 937 | 7341 | 2559 | 2437
Number of liquor stores within 1000 feet
1to8 38 236 203 98
0 707 | 6615 | 2322 | 2318
Number of bus stops within 1000 feet lor2 32 179 101 50
3 or more 236 783 339 167
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Table 5-36: Descriptive statistics for base condition SPFs (3SG: 345 intersections)

Variable WIS Mean | Std. Dev | Minimum | Maximum
crashes
Major road AADT 12,363 4949 3050 32,109
Minor road AADT 4077 3026 110 18,415
Total Intersection AADT 16,440 5989 4440 44,345
Ratio of Minor to Total
Intersection AADT 0.25 0.13 0.02 0.5
KA 62 0.18 0.42 0 2
KAB 375 1.09 1.37 0 9
KABC 854 2.48 2.47 0 13
KABCO 4026 | 11.67 9.14 0 52
SV_KA 13 0.04 0.19 0 1
SV_KAB 47 0.14 0.38 0 3
SV_KABC 67 0.19 0.47 0 4
SV_KABCO 253 0.73 1.21 0 15
SD_KA 22 0.06 0.24 0 1
SD_KAB 158 0.46 0.75 0 4
SD_KABC 424 1.23 1.38 0 6
SD_KABCO 2302 6.67 5.8 0 39
OD_KA 10 0.03 0.17 0 1
OD_KAB 60 0.17 0.53 0 6
OD_KABC 99 0.29 0.68 0 7
OD_KABCO 369 1.07 1.47 0 11
ID_KA 17 0.05 0.24 0 2
ID_KAB 108 0.31 0.73 0 6
ID_KABC 253 0.73 1.36 0 10
ID_KABCO 974 2.82 3.52 0 24
86
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Table 5-37: Descriptive statistics for base condition SPFs (3ST: 2082 intersections)

. Number of . . .
Variable Mean | Std Dev | Minimum | Maximum
crashes
Major road AADT 8187 5221 270 38,460
Minor road AADT 2137 1400 33 18,460
Total Intersection AADT 10,324 5810 540 56,920
Ratio of Minor to Total
Intersection AADT 0.23 0.12 0 0-5
KA 198 0.1 0.32 0 3
KAB 840 0.4 0.78 0 7
KABC 1422 0.68 1.15 0 11
KABCO 4756 2.28 3.47 0 49
SV_KA 59 0.03 0.18 0 2
SV_KAB 222 0.11 0.36 0 5
SV_KABC 297 0.14 0.43 0 6
SV_KABCO 952 0.46 0.87 0 13
SD_KA 52 0.02 0.16 0 2
SD_KAB 323 0.16 0.48 0 6
SD_KABC 661 0.32 0.75 0 9
SD_KABCO 2390 1.15 2.37 0 31
OD_KA 43 0.02 0.14 0 1
OD_KAB 128 0.06 0.25 0 2
OD_KABC 184 0.09 0.3 0 3
OD_KABCO 453 0.22 0.54 0 4
ID_KA 43 0.02 0.16 0 3
ID_KAB 163 0.08 0.33 0 4
ID_KABC 272 0.13 0.49 0 9
ID_KABCO 885 0.43 1.08 0 14
87
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Table 5-38: Descriptive statistics for base condition SPFs (4SG: 589 intersections)

Variable LT Mean | Std. Dev | Minimum | Maximum
crashes
Major road AADT 11,067 5650 1810 34,960
Minor road AADT 3803 3167 72 27,228
Total Intersection AADT 14,870 7344 2061 56,488
Ratio of Minor to Total
Intersection AADT 0.25 0.13 0.01 0.5
KA 148 0.25 0.56 0 4
KAB 767 1.3 1.79 0 14
KABC 1798 3.05 3.67 0 35
KABCO 7253 | 12.31 12.7 0 109
SV_KA 16 0.03 0.16 0 1
SV_KAB 73 0.12 0.37 0 3
SV_KABC 112 0.19 0.48 0 3
SV_KABCO 409 0.69 1.05 0 9
SD_KA 53 0.09 0.33 0 3
SD_KAB 283 0.48 0.92 0 8
SD_KABC 868 1.47 2.15 0 18
SD_KABCO 3964 6.73 8.32 0 76
OD_KA 27 0.05 0.23 0 2
OD_KAB 167 0.28 0.74 0 6
OD_KABC 309 0.52 1.14 0 10
OD_KABCO 1021 1.73 2.81 0 25
ID_KA 51 0.09 0.29 0 2
ID_KAB 239 0.41 0.83 0 8
ID_KABC 483 0.82 1.34 0 8
ID_KABCO 1671 2.84 3.36 0 26
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Table 5-39: Descriptive statistics for base condition SPFs (4ST: 551 intersections)

. Number of . . .
Variable Mean | Std Dev | Minimum | Maximum
crashes
Major road AADT 8251 6179 450 37,301
Minor road AADT 2088 1459 50 13,773
Total Intersection AADT 10,339 6658 810 40,111
Ratio of Minor to Total
Intersection AADT 0.23 0.13 0 0-5
KA 120 0.22 0.56 0 4
KAB 432 0.78 1.39 0 9
KABC 706 1.28 1.99 0 16
KABCO 1931 3.5 4.58 0 51
SV_KA 20 0.04 0.2 0 2
SV_KAB 61 0.11 0.37 0 2
SV_KABC 72 0.13 0.39 0 2
SV_KABCO 265 0.48 0.81 0 5
SD_KA 15 0.03 0.18 0 2
SD_KAB 84 0.15 0.46 0 4
SD_KABC 219 0.4 1.05 0 14
SD_KABCO 720 1.31 2.91 0 46
OD_KA 21 0.04 0.2 0 2
OD_KAB 60 0.11 0.38 0 3
OD_KABC 83 0.15 0.44 0 3
OD_KABCO 214 0.39 0.82 0 6
ID_KA 64 0.12 0.41 0 4
ID_KAB 225 0.41 0.99 0 7
ID_KABC 328 0.6 1.31 0 9
ID_KABCO 705 1.28 2.24 0 15

5.2.2 Estimated Models

We estimated all the models using negative binomial regression with a constant overdispersion parameter
and the traditional log-linear framework. Most previous studies on this topic have used a power function,
which provides limited flexibility in the functional form. In this section, we used the Hoer/ function to
provide more flexibility in the functional form (Hauer, 2015). The Hoerl function allows the relationship
to have a convex/concave shape with inflection points. With it, the dependent variable (Y) is related to
the independent variable (X) in the following way:

Y = expla; + a,X + azIn(X)] or Y = e%1e%X x93, (5-1)

where aj, a,, and a3 are parameters to be estimated. We examined two functional forms, Model A and
Model B.
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Model A included as the starting point the following independent variables in the following form:

AADT g AADT 1in

Y =etxe X< 10000 ) X (AADTypq;)¢ X edX( 10000 ) X (AADTy,i0)¢ (5-2)
Model B included as the starting point the following independent variables in the following form:

AADT¢o¢ AADTpin

Y =e® x e’ * (W) X (AADT;p)¢ X edX(AADTtot) X (%)e (5-3)
tot

where Y is the predicted number of crashes in one year, and a, b, ¢, d, and e are parameters to be
estimated.

For both model forms A and B, the estimation started with all the variables presented above, and, through
backward elimination, variables that were not statistically significant were removed. The final models
from both forms (that is, forms A and B) are presented below.

Table 5-40 to Table 5-43 provide the model results, including parameter estimates (that is, coefficients a,
b, ¢, d, and e), standard errors (in parentheses), and the overdispersion parameter (k). For some crash
types, models could not be estimated, or they did not converge. In some cases, the overdispersion
parameter was quite high (exceeding 2). These models should be used with caution. For the crash types
for which models could not be estimated, we recommend using the prediction for the next closest model
and multiplying the prediction by the proportion of that crash type. For example, if a prediction model
for KA crashes is not available, but one for KAB crashes is, the prediction for KA crashes can be obtained
by the following equation:

Predicted KA crashes = Predicted KAB crashes X (

Number of KA crashes in the data set )
Number of KAB crashes in the data set

(5-4)
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Table 5-40: Prediction Models for 3SG Intersections

Copyright National Academy of Sciences. All rights reserved.

Crash Model
Severit a (S.E. b (S.E. c(S.E. d (S.E. e (S.E. k (S.E.
Type Y| Form (S.E.) (S.E.) (S.E.) (S.E.) (S.E.) (S.E.)
All KABCO B -4.5704 .6366 .1519 4669
(1.0173) (.1051) (.0618) (.0432)
-6.7956 4799 .2585 .5344
All KABC A
(1.3109) (.1274) (.0725) (.0805)
-8.0554 .5062 .2814 .5745
All KAB A
(1.6897) (.1660) (.0916) (.1336)
All KA A Model did not converge
-2.3447 .3894 9168 4113
SV KABCO A
(.2106) | (.1448) (.1964) (.1444)
sV KABC Model did not converge
sV KAB Model did not converge
sV KA Model did not converge
-6.2255 5414 .2390 4615
SD KABCO A
(1.0384) (.1034) (.0575) (.0486)
-9.1985 0.6682 0.2495 0.3761
SD KABC A
(1.5615) (0.1517) (0.0828) (0.1029)
-9.3282 .5844 2413 4521
SD KAB A
(2.2931) (.2243) (.1223) (.2344)
SD KA Model did not converge
-10.0017 0.9248 0.7486
oD KABCO B
(1.9351) (0.1991) (0.1512)
-17.9744 1.3504 0.3523 1.1826
oD KABC A
(3.5381) (0.3371) (0.1741) (0.4533)
-21.2395 1.4846 .5304 1.4144
oD KAB A
(4.5175) (.4257) (.2182) (.6955)
oD KA Model did not converge
D KABCO B -2.3636 0.2385 1.0859
(1.6005) (0.1658) (0.1221)
-2.9487 0.1596 1.7788
ID KABC B
(2.3752) (0.2460) (0.3222)
-4.1873 0.1997 2.2076
ID KAB B
(3.2704) (0.3385) (0.6438)
-8.9578 0.5014 43772
ID KA B
(7.2945) (0.7521) (4.1273)
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Table 5-41: Prediction models for 3ST intersections

Copyright National Academy of Sciences. All rights reserved.

Crash Model
S it S.E. b (S.E. S.E. d (S.E. S.E. k (S.E.
Type | SSVEtY | Lo | a(SE) | b(SE) | c(SE) | d(SE) | e(SE) | k(SE)
-3.1275 0.6210 0.2319 0.7280 0.8087
All KABCO A
(0.8631) | (0.1209) | (0.1083) | (0.1754) (0.0442)
-2.3919 .7690 .7615
All KABC B
(.0706) | (.0514) (.0838)
-2.7900 .6705 .8031
All KAB B
(.0829) | (.0593) (.1266)
-4.0506 .5272 .8594
All KA B
(.1482) | (.1044) (.4459)
1.0576 0.3861 -0.3676 1.0986
SV KABCO B
(1.3977) | (0.1658) | (0.1711) (0.1316)
-0.0628 0.2730 -0.3596 1.4458
SV KABC B
(2.1687) (0.2626) | (0.2659) (0.3783)
-1.8441 -0.1647 1.6069
SV KAB B
(1.1345) (0.1252) (0.5129)
-2. -0. .
v KA B 0986 0.2835 4.0221
(2.1063) (0.2334) (2.6334)
-14.8383 1.4636 -.1385 1.1428
SD KABCO B
(.6258) (.0689) (.0539) (.0803)
-14.2585 1.3176 -1.1784 .9478
SD KABC B
(.9668) (.0989) (.4720) (.1552)
D KAB B -14.1222 1.2298 -1.2920 1.3071
(1.3007) (.1327) (.6521) (.3124)
D KA B -11.5340 .7330 1.7962
(2.5011) (.2685) (2.0336)
oD KABCO B -3.3353 0.6177 1.1523
(.1100) | (.0794) (.2364)
-4.1549 5514 .2950
oD KABC B
(.1470) | (.1003) (.3737)
-4.4870 .5270 .6168
oD KAB B
(.1778) | (.1231) (.6314)
oD KA B Model did not converge
-11.1651 0.8094 0.2535 2.2740
ID KABCO A
(0.8035) (0.0849) (0.0719) | (0.2200)
-12.7177 0.8967 0.1974 3.3635
ID KABC A
(1.2614) (0.1316) (0.1118) | (0.6204)
-14.4692 0.9112 0.3412 3.0787
ID KAB A
(1.5707) (0.1608) (0.1432) | (0.8626)
™ KA A -17.4865 1.0812 0.3558 7.9899
(3.1341) (0.3051) (0.3044) | (4.2722)
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Table 5-42: Prediction models for 4SG intersections
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Crash Model
Severit a (S.E. b (S.E. c(S.E. d (S.E. e (S.E. k (S.E.
Type Y| torm (S.E.) (S.E.) (S.E.) (S.E.) (S.E.) (S.E.)
All KABCO B -7.4359 9218 .5514
(.6531) (.0685) (.0381)
All KABC 5 -10.5443 1.0989 .6386
(.8782) (.0915) (.0628)
-9.9857 .9535 .7440
All KAB B
(1.0898) (.1134) (.1031)
-9.6739 7511 .6997
All KA B
(1.8404) (.1907) (.3296)
-4.3216 .3000 .7818
SV KABCO B
(1.2070) (.1264) (.1586)
-7.7339 0.5209 0.9105
SV KABC B
(2.0833) (0.2169) (0.4749)
-8.9332 0.6011 0.8532
SV KAB B
(2.5001) (0.2597) (0.6746)
Y KA Model did not converge
-8.2447 0.9424 0.6264 0.5800
SD KABCO A
(0.6774) (0.0744) | (0.1243) (0.0448)
-14.2230 1.2127 0.2693 0.6257
SD KABC A
(1.0584) (0.1114) (0.0657) | (0.0848)
-15.2404 1.2210 0.2476 0.8485
SD KAB A
(1.6168) (0.1695) (0.1001) (0.2019)
-14.3865 .7926 4313 1.7976
SD KA A
(3.1409) (.3312) (.2196) | (1.1221)
oD KABCO A -9.7053 .7364 .2867 1.1587
(1.0998) (.1173) (.0767) (.1190)
oD KABC B -13.5030 1.2228 1.8372
(1.8439) (0.1914) (0.3049)
-12.7760 1.0838 2.2166
oD KAB B
(2.1772) (.2256) (.5129)
-12.8419 .9029 3.8585
oD KA B
(4.4636) (.4616) (3.0410)
-1.5214 .3492 1316 .8944
ID KABCO A
(.4578) | (.0863) (.0594) | (.08100)
-5.6212 2977 .1958 1.2440
ID KABC A
(1.1967) (.1319) (.0860) (.1843)
-6.1898 4390 1.4297
ID KAB A
(1.6067) (.1679) (.3125)
ID KA A Model did not converge
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Table 5-43: Prediction models for 4ST crashes

Crash Model
Severit a (S.E. b (S.E. c (S.E. d (S.E. e (S.E. k (S.E.
Type Y| ror | a(SE) | B(SE) | c(SE) | d(SE) | e(SE) | k(SE)
All KABCO A -3.6743 4071 .9208 1.0155
(.6256) (.0726) (.3490) (.0867)
All KABC B -3.9675 3417 1.6020
(.9735) (.1067) (.1834)
All KAB Could not obtain useful model
All KA Could not obtain useful model
-2.2170 .3435 .5835
SV KABCO B
(.1253) (.0889) (.1913)
-13.8618 -1.0741 1.3021 1.5358
SV KABC B
(5.6055) | (0.6352) | (0.6814) (0.8553)
sy KAB B -12.0750 -0.9275 1.0714 2.8132
(5.9194) (0.6816) (0.7211) (1.3122)
-8.3241 0.4279 1.7361
SV KA B
(3.5390) (0.3835) (2.8313)
-12.4690 1.0633 .2661 1.1504
SD KABCO A
(1.0120) (.1013) (.0875) | (.1471)
-5.9134 .8168 4033 1.8464
SD KABC A
(.9920) (.1394) (.1322) (.3910)
-5.8261 .3579 .3360 1.8506
SD KAB A
(1.3016) | (.1865) (.1742) | (.7743)
SD KA Model did not converge
oD KABCO B -6.0829 0.4417 1.4996
(1.2859) (0.1399) (0.3422)
-5.5548 0.2814 2.3460
oD KABC B
(1.9029) (0.2078) (0.9251)
-5.5578 0.2462 3.0857
oD KAB B
(2.1901) (0.2393) (1.3915)
oD KA Model did not converge
ID KABCO Could not obtain useful model
ID KABC Could not obtain useful model
ID KAB Could not obtain useful model
ID KA Could not obtain useful model
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5.2.3 Validation of Models

To calibrate and validate the models estimated using the data from Ohio, we used six years of data (2010-
15) from North Carolina. Some of the data for calibration were compiled as part of project funded by the
North Carolina Department of Transportation (Smith et al. 2016). It was extremely difficult to find
intersections that matched the base conditions. Among the 102 four-leg signal-controlled intersections
that were identified, for example, only three matched the base conditions used to estimate the original
SPFs. Similarly, among the 33 three-leg signal-controlled intersections identified, none matched the base
conditions. Since the number of intersections with the “base conditions” were very small, the
calibration/validation sample included all intersections (including both intersections whose characteristics
matched the base conditions, and intersections whose characteristics did not match the base
conditions). For those intersections whose characteristics did not match the base condition, the CMFs
from the 1°* edition of the HSM were used to adjust the predictions from the base models. As mentioned
earlier, for the base models that were estimated using the Ohio data for signalized intersections, the base
condition was “lighting present”. However, the base condition in the 1% edition of the HSM was “lighting
not present”. Hence, for signalized intersections, the inverse of the CMF from the HSM was used.

We conducted calibration and validation for the following crash types:

e All crashes (KABCO)

e SV_KABCO
e SD_KABCO
e OD_KABCO
e ID_KABCO

The sample of crashes was limited for the other crash types, especially in the case of the stop-controlled
intersections. Table 5-44 to Table 5-47 provide the summary of the data used in the calibration and
validation.

Table 5-44: Summary of Calibration/Validation data set from North Carolina for 3SG
intersections (33 intersections; 2010 to 2015)

Variable Sum Mean Star.\d:f\rd Minimum Maximum
deviation
KABCO 839 25.42 29.40 0 171
SV_KABCO 83 2.52 2.27 0 7
SD_KABCO 466 14.12 19.98 0 116
OD_KABCO 119 3.61 5.67 0 31
ID_KABCO 179 5.42 5.24 0 18
Major AADT 14,935 7,801 3,198 32,208
Minor AADT 7,124 4,245 267 16,683
Total AADT 22,059 10,519 6,935 48,542
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Table 5-45: Summary of Calibration/Validation data from North Carolina for 3ST intersections
(52 intersections: 2010 to 2015 data)

Variable Sum Mean Star.1d:i|rd Minimum Maximum
deviation
KABCO 304 5.85 8.10 0 36
SV_KABCO 55 1.06 1.55 0 7
SD_KABCO 124 2.38 4.43 0 19
OD_KABCO 48 0.92 1.59 0 8
ID_KABCO 87 1.67 2.38 0 10
Major AADT 7,682 7,232 67 45,733
Minor AADT 1,764 2,227 18 9,500
Total AADT 9,446 7,832 117 45,803

Table 5-46: Summary of Calibration/Validation data from North Carolina for 4SG intersections

(102 intersections: 2010 to 2015)

Variable Sum Mean Starjda.zrd Minimum Maximum
deviation
KABCO 6049 59.3 51.4 0 275
SV_KABCO 285 2.8 2.6 0 13
SD_KABCO 3605 35.3 39.4 0 229
OD_KABCO 752 7.4 6.4 0 35
ID_KABCO 1436 14.1 10.3 0 50
Major AADT 19,574 10,047 3,500 47,063
Minor AADT 10,053 6,492 15 33,625
Total AADT 29,627 14,308 6,200 69,433

Table 5-47: Summary of the Calibration/Validation data from North Carolina for 4ST
intersections (55 intersections: 2010 to 2015 data)

) Standard . . -
Variable Sum Mean . Minimum Maximum
deviation

KABCO 464 8.92 7.48 0 35
SV_KABCO 48 0.92 1.12 0 4
SD_KABCO 156 3.00 2.69 0 15
OD_KABCO 51 0.98 1.30 0 6
ID_KABCO 210 4.04 5.24 0 29
Major AADT 7101 5339 335 29,375
Minor AADT 1122 1214 5 8,625
Total AADT 8223 5372 363 38,000
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We considered two basic options for calibration and validation. The first was to estimate a calibration
factor following the approach outline in the HSM. The second was to estimate a calibration function
(Srinivasan et al. 2016). As discussed in Srinivasan et al. (2016), calibration functions can take many forms.
For this effort, we used the following form:

Y = ax [, CMF; X (Base Pred)® (5-5)

where Y is the expected number of crashes, Base Pred is the prediction from the base model, and
[T, CMF; represents the product of the CMFs from the HSM. This equation can also written as follows:

Y =[IY, CMF; x exp[In(a) + b x In(Base Pred)] (5-6)

If b is close to 1, the calibration function will not provide any advantages over a simple calibration factor
(if b = 1, the calibration factor is “a”).

To estimate In(a) and b, we used a negative binomial regression model. The dependent variable was the
number of observed crashes at each site, and the independent variables included Base Pred. The product
of the CMFs was included as an offset. For some of the intersection types, data were available on the
North Carolina region (Coastal, Piedmont, or Mountain), and we included them in the negative binomial
model in addition to Base Pred.

There are at least two ways of estimating a calibration function. One is to use the approach followed in
Srinivasan et al. (2016), in which the solver tool in Excel is used to estimate the negative binomial
regression using maximum likelihood estimation, with a constraint to ensure the total fitted values are
equal to the total observed crash counts. The second is to use traditional tools, such as SAS PROC
GENMOD, which also use maximum likelihood estimation, but without any constraints regarding the fitted
and observed values. The second approach was used here, but before the calibration functions were
evaluated using goodness-of-fit measures, they were calibrated in order to ensure that the total fitted
values and the total observed crash counts are the same.

Table 5-48 to Table 5-51 provide information on the calibration factors and calibration functions
estimated for 3SG, 3ST, 4SG, and 4ST intersections, respectively. After estimating both, we used “The
Calibrator,” a tool (already mentioned) developed by FHWA for calibrating and assessing SPFs, to obtain
the following goodness-of-fit (GOF) measures:

e Modified RZ—higher values indicate better-fitting SPFs.

e MAD (mean absolute deviation)—lower values indicate better-fitting SPFs.

e Maximum absolute CURE deviation (MACD)—lower values indicate better-fitting SPFs.

e Percentage CURE deviation—lower values indicate better-fitting SPFs. The Calibrator
recommends this be 5 percent or lower.

The Calibrator tool automatically calibrates a model before producing the GOF measures. For example, if
a calibration function predicts a total of 845.5 crashes and the total observed crashes were 839, then a
calibration factor of 839/845.5 (=0.992) is applied before the GOF measures are produced. In most cases,
the calibration functions provided better GOF measures. This indicates agencies should consider using
calibration functions if the calibration factors alone do not provide a reasonable fit for their sample data.
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Table 5-48: Calibration/Validation Results for 3SG intersections

Total Total S o o
S8 Option Observed | Predicted | In(a) (S.E.) b (S.E.) Sl MOdlzﬂed MAD MACD % .c“'fe
Type Factor R Deviation
Crashes Crashes
HSM
. . 839 765.1 1.097 0.20 13.42 135.8 33%
All calibration
Calibration -3.761 2.115 0
function 839 845.5 (1.430) (0.426) 0.992 0.28 13.67 81.6 0%
HSM
. . 83 62.1 1.337 0.00 1.98 18.1 18%
sV calibration
Calibration 0.984 0.226 0
function 83 82.8 (0.258) (0.287) 1.002 0.05 1.78 6.7 3%
HSM
. . 466 443.8 1.050 0.21 8.60 82.9 52%
D calibration
Calibration -3.242 2.113 0
function 466 471.4 (1.148) (0.406) 0.989 0.27 8.78 52.2 3%
HSM
. . 119 72.9 1.633 0.18 2.87 25.3 15%
oD calibration
Calibration -0.247 1.636 0
function 119 119.2 (0.495) (0.447) 0.999 0.22 2.99 13.6 3%
HSM
. . 179 158.3 1.131 0.09 3.99 25.0 9%
D calibration
Calibration -9.498 6.276 0
function 179 182.7 (2.399) (1.321) 0.979 0.45 3.25 10.5 3%
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Table 5-49: Calibration/Validation results for 3ST intersections
Total Total . . - o
e Option Observed | Predicted | In(a) (S.E.) b (S.E.) Sl MOdlzﬂed MAD MACD % Fut:e
Type Factor R Deviation
Crashes Crashes
HSM
. . 304 207.0 1.469 0.00 5.35 49.4 2%
All calibration
Calibration 0.04512 1.1633 0
function 304 412.4 (0.6234) (0.3058) 0.737 0.00 5.77 96.9 13%
HSM
. . 55 48.8 1.126 0.00 1.23 20.9 83%
sV calibration
Calibration 0.5732 -1.6434 0
function 55 60.0 (0.4092) (1.1889) 0.917 0.00 1.08 11.5 8%
HSM
. . 124 70.4 1.761 0.04 2.45 16.6 0%
D calibration
Calibration 0.7871 0.5261 0
function 124 124.3 (0.5059) (0.2174) 0.997 0.18 2.51 17.6 0%
HSM
. . 48 20.0 2.406 0.00 1.03 6.2 21%
oD calibration
Calibration 1.5399 1.9334 0
function 48 97.3 (0.6837) (0.7517) 0.493 0.00 1.32 25.4 21%
HSM
. . 87 28.0 3.110 0.13 1.64 12.5 2%
D calibration
Calibration 0.3237 0.7153 0
function 87 92.2 (0.4322) (0.2365) 0.943 0.20 1.47 13.6 6%
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Table 5-50: Calibration/Validation results for 4SG intersections

Total Total S o o
e Option Observed Predicted In(a) (S.E.) b (S.E.) el e MOdlzﬂed MAD | MACD % Fut:e
type Factor R Deviation
Crashes Crashes
HSM
. . 6260 2753.1 2.270 0.23 | 32.91 | 447.2 25%
All calibration
Calibration -0.6905 1.4591 0
function 6260 6507.2 (0.5942) (0.1528) 0.960 0.36 | 30.19 | 408.8 1%
HSM
. . 285 105.2 2.708 0.00 | 2.08 38.3 17%
sV calibration
Calibration 0.0150 2.8972 0
function 285 286.8 (0.3689) (0.5726) 0.994 0.24 | 1.85 17.4 1%
HSM . 3605 2245.1 1.606 0.44 | 20.52 | 204.8 1%
D calibration
Calibration 0.4928 1.0693 0
function 3605 3891.9 (0.4031) (0.1069) 0.926 0.43 | 19.20 | 290.2 1%
HSM
. . 752 413.5 1.819 0.02 | 4.72 78.2 20%
oD calibration
Calibration 1.9957 0.4826 o
function 752 768.0 (0.2708) (0.1249) 0.979 0.15| 4.54 36.8 1%
HS'.VI . 1436 542.3 2.648 0.03 | 7.54 99.8 12%
D calibration
Calibration 1.5775 0.8396 o
function 1436 1488.1 (0.4119) (0.1790) 0.965 0.11| 7.26 85.4 4%
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Table 5-51: Calibration/Validation Results for 4ST Intersections

Total Total
Crash Calibration Modified % Cure
Option Observed Predicted In(a) (S.E.) b (S.E.) ) MAD | MACD °, )
Type Factor R Deviation
Crashes Crashes
HSM
. . 464 266.6 1.741 0.00 | 5.88 76.9 10%
Al calibration
Calibration 0.01803 1.3714
. 464 551.4 0.842 0.00 | 5.96 72.9 0%
function (0.5403) (0.3097)
HSM
. . 48 41.3 1.163 0.00 | 0.81 4.8 2%
sV calibration
Calibration 48 48.6 0.1673 1.0300 0.987 000 0.81| 5.0 2%
function (0.1791) (0.6541)
HSI,VI . 157 68.2 2.300 0.00 | 2.28 31.3 2%
D calibration
Calibration 1.1655 0.7739
157 181.5 0.865 0.00 | 2.21 20.0 0
function (0.1535) (0.1651)
HSM
. . 52 31.0 1.678 0.14 | 0.90 7.1 2%
oD calibration
Calibration 5y 6.1 0.9375 2.2908 0.926 0.00 | 089 8.7 2%
function ' (0.2568) |  (0.6165) ' ' ‘ ‘ °
HSM
. . 213 97.3 2.189 0.00 | 3.62 49.0 44%
D calibration
Calibrati 0.9496 0.9954
altbration 213 250.6 0.850 0.00| 3.62| 489 42%
function (0.3205) (0.4092)
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6 REVISITING THE HSM CALIBRATION APPROACH

6.1 APPROACHES CONSIDERED

6.1.1 Background on HSM Approach

The development of new models for the HSM, taken together with research conducted since its release
in 2010 on key issues pertaining to the calibration procedure, provided the need and the opportunity to
revisit that procedure in this research project with a view to updating it. The key issues, which are
interrelated with others, pertain to the sample size for calibration data and to whether and how to capture
the variation of the calibration factor with site characteristics. To address the latter issue, we investigated
a procedure based on calibration functions.

A review of the research on establishing minimum sample sizes and estimating calibration functions, along
with the results of an empirical investigation in this project, led to the proposed calibration procedure
update documented here. The research review suggested that required samples will, indeed, vary across
site types, jurisdictions, and crash types and severities. In particular, a consensus seemed apparent that
the desirable minimum suggested in the HSM of 30-50 sites with at least 100 crashes a year might not be
universally applicable. The research carried out since 2010 has not, however, provided any consistent
guidance on what does constitute an appropriate sample. In some cases, recommended sample sizes are
so large that a jurisdiction may be better off acquiring (or hiring) personnel with the skill sets required to
estimate their own models directly rather than calibrate an external one. The sample size guidance in the
procedure recommended here is based on a report by Bahar et al. (2014); even so, sample sizes based on
that guidance are not directly estimated but, rather, are determined through an iterative assessment of
the accuracy of the calibration factor.

The empirical investigation pursued in this project, in essence, evaluates the guidance in Bahar et al.
(2014) by using various sample sizes in assessing and comparing combinations of the following three
options that include exploration of calibration functions:

A) Estimating a single calibration factor (C)
B) Estimating a calibration function
C) Directly estimating a model using the calibration data

We performed different sets of analyses pertaining to these assessments and comparisons for four
representative site types. For all analyses, we estimated a constant calibration factor using the HSM
methodology as the sum of the model predictions divided by the sum of the observed crashes for the
calibration data. We also estimated a calibration function in the following form, based on research by
Srinivasan et al. (2016):

Npredicted = @ X (Unadjusted Prediction)® (6-1)

This function, in effect, allows the calibration factor to vary from site to site, depending on site
characteristics that affect the crash prediction, most notably traffic volume.

We applied two alternative approaches for this investigation, as described below.
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6.1.2 Approach1

We used three representative site types for this investigation: urban four-lane divided segments; urban
two-lane divided segments; and rural two-lane, three-leg stop-controlled intersections. The final models
estimated and presented in earlier chapters were calibrated to randomly selected sites from another
jurisdiction to increase sample sizes. We also directly estimated models with model forms identical to
those being calibrated, with the exception that we used a constant overdispersion parameter.

The logic behind this “iterative” approach was that, at small sample sizes, applying either a calibration
factor or function to an original model would prove superior to using a directly estimated model. As
sample sizes increased, there would be a point at which a directly calibrated model would perform better.
At the other end of the spectrum, there would also be a point at which the sample size would be too small
even to estimate a reliable calibration factor.

We evaluated the performance of a calibrated model using several criteria provided by the FHWA
Calibrator spreadsheet tool (Lyon et al. 2016). The guidance this tool provided indicated a calibrated
model is reasonable if either the coefficient of variation (CV) of the estimated calibration factor is 0.15 or
less or if a cumulative residuals (CURE) plot for the fitted values has fewer than 5 percent of the data
points outside of the two standard deviation limits. Other goodness-of-fit measures provided by the tool
include the mean absolute deviation (MAD), modified R?, a calibrated constant overdispersion parameter,
and the maximum deviation from zero of the CURE plot for the fitted values.

6.1.3 Approach 2

This investigation assessed the temporal and spatial transferability and calibration of the models. In this
case, all of the data available for the calibration were used rather than samples of various sizes. The site
type investigated was multilane rural highways.

6.2 APPROACH 1 RESULTS

6.2.1 Urban Four-Lane Divided Segments
We calibrated the model we developed for total crashes and average conditions using data from Ohio to
randomly selected sites from Minnesota for increasing sample sizes.

Table 6.1 presents the results of the investigation for urban four-lane divided segments. It shows the
number of sites and total crashes used and includes a number of measures, among them the calculated
calibration factor (C) and its coefficient of variation (CV), the parameter estimates of the calibration
function (a and b in Equation 6.1), and the goodness-of-fit measures, and it compares the three options
as provided by the Calibrator tool.

A number of observations can be made from the results in Table 6-1:

1. Forthe three sample sizes investigated, the goodness-of-fit statistics are reasonably similar.

2. The maximum calibration factor CV value of 0.15 recommended in the Calibrator tool guidance is
not reached until a sample size of 100 sites and 271 crashes. Most interesting is that, at smaller
sample sizes, a model directly estimated for the Minnesota data was successful, and the
goodness-of-fit statistics for all three options were comparable. This would seem to indicate that
even if the CV is higher than 0.15, a directly estimated model may still be feasible.
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6.2.2

The calibration function does perform better in general than a calibration factor, although the
differences are not very large for these data.

The percentage of data points beyond the two standard deviation limits of the CURE plot for fitted
values increases as the sample size increases. This may indicate that at small sample sizes the
percentage outside these limits may be small simply due to the small sample.

Urban Two-Lane Undivided Segments

The model for total crashes and average conditions developed using data from Ohio was calibrated to
randomly selected sites from Minnesota.

Table 6-2 shows the results of the investigation for urban two-lane undivided segments. From them, the

following observations can be made:

1.

6.2.3

With 25 sites, the directly estimated model and calibration function models did not converge.
Surprisingly, however, the calibration factor of 0.14 had a lower CV than the 50-site sample and
would be considered acceptable per the Calibrator tool guidance. All of the goodness-of-fit
statistics look impressive at first glance, but this is deceptive, as the sample size is only 59 crashes.
A modified R? of 0.96, for example, is unrealistically high.

With 50 sites, although the CV is greater than the 0.15 threshold, the calibration function
measures are slightly better than those for the directly estimated model, except for the CURE plot
measure of data points outside the two standard deviation limits for the predicted values, for
which there is a tie.

With 75 sites, the calibration factor and function perform better than the directly estimated
model, with the exception of the overdispersion parameter measure. The goodness-of-fit
statistics are worse than for the 50-site sample, and the CV of 0.16 is just over the 0.15 threshold.
The results for 100 sites are similar to those for 75 sites.

As was seen for urban four-lane divided segments, the percentage of data points outside the two
standard deviation limits of the CURE plot for the fitted values increases as the sample size
increases.

Rural Two-Lane, Three-Leg Stop-Controlled Intersections

We calibrated the model for total crashes and base conditions developed using data from Minnesota (a
total of seven years of crash data) to randomly selected sites from Ohio (a total of five years of crash data).

Table 6-3 shows the results of the investigation for rural two-lane, three-leg stop-controlled intersections.
A number of observations can be made from these results:

1.
2.

For all four sample sizes, the goodness-of-fit statistics are reasonably similar.

The maximum calibration factor CV value of 0.15 recommended in the Calibrator tool guidance is
not reached until a sample size of 125 sites and 247 crashes is reached. Most interesting is that a
model directly estimated for the Ohio data was successful at smaller sample sizes, and the
goodness-of-fit statistics for all three options were comparable. This would seem to indicate that
even if the CV is higher than the 0.15 threshold, a directly estimated model may still be feasible
even with smaller sample sizes.

The calibration function does perform better in general than a calibration factor, although the
differences are not very large for these data.

The percentage of data points beyond the two standard deviation limits of the CURE plot for fitted
values increases as the sample size increases for the calibration factor option (Option A). This may
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indicate that at small sample sizes the percentage outside these limits may be small simply due
to the small sample.

6.3 APPROACH 2 RESULTS

The investigation for this approach and site type involved an assessment of the temporal and spatial
transferability and calibration of the models based on the CV of the calibration factor. In this case, we
used all of the data available for the calibration rather than samples of various sizes.

First, we applied Texas 2012 data for calibration of the SPFs, using Texas 2009-11 data for undivided
highway segments. Table 6-4 shows the results. Then, we used Ohio 2009-11, Washington 2009-11, and
Illinois 2009-10 data for calibration of the California SPFs for divided highway segments. The results are
shown in Table 6.5.

The results in Table 6-5 indicate that, for Ohio and lllinois, the calibration function would provide
predictions similar to those provided by a single calibration factor, since parameter b (Equation 6.1) was
close to 1.0. No insights could be obtained on sample sizes of sites and crashes, as the results were not
only inconsistent but very jurisdiction-specific. The lowest MAD value, for example, was for the data with
the largest number of sites but the fewest crashes and the highest value of the CV of the calibration factor.

The temporal calibration results in Table 6-4 show parameter b of the calibration function was also close
to 1.0, but even with a relatively large sample of sites and crashes for the same state, the CV of the
calibration factor was beyond the threshold of 0.15 recommended for a successful calibration.
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Table 6-1: Results for Urban Four-Lane Divided Segments

Calibration MAD Modified R? overdispersion CURE max dev CURE % dev
Function parameter
Mo, - OlsEEd e Parameters Option® Opti Opti Opti Opti
Sites | Crashes | (CV) > ption ption ption ption ption
a A B Cc A B C A B (o A B C A B C
(s.e.) (s.e.)
1.48 0.4296 0.9859
50 140 (0.24) | (0.2277) | (0.2735) 2.28 | 228 1210 0.16 | 0.16 | 0.26 | 0.97 | 0.97 | 0.96 | 19.02 | 18.61 | 20.57 4 4 2
1.11 0.0222 1.1183
75 161 (0.17) | (0.1811) | (0.1974) 163 | 166 | 1.66 | 0.32 | 0.29 | 0.29 | 0.56 | 0.57 | 0.56 9.99 | 14.38 | 18.75 17 7 5
1.25 0.4178 0.8995
100 271 (0.15) | (0.1324) | (0.1415) 2.22 1213|220 0.00|0.12 | 0.00 | 0.66 | 0.63 | 0.64 | 52.83 | 41.28 | 50.13 21 15 20
*A) Estimating a single calibration factor (C); B) Estimating a calibration function; C) Directly estimating a model using the calibration data
Table 6-2: Results for Urban Two-Lane Undivided Segments
Calibration MAD Modified R? overdispersion CURE max dev CURE % dev
Function parameter
Mo, | QIESEEd ¢ Parameters Option® Opti Opti Opti Opti
Sites | Crashes | (CV) : ption ption ption ption ption
a A | B|c|A|lB|c|A]|B|C| A B c |a| B | C
(s.e.) (s.e.)
25 59 (01'1'15; n/a nfa|120| n/a| nfa| 096 | n/a| nfa| 002| n/a| n/a| 3.95 n/a nfa| 4| n/a| n/a
1.15 0.3374 0.8394
50 137 (0.20) | (0.2004) | (0.1949) 196 | 192 | 197 | 043 | 0.48 | 0.43 | 0.60 | 0.57 | 0.60 | 21.13 | 13.68 | 21.25 4 2 2
1.15 0.3786 0.7642
75 186 (0.16) | (0.1641) | (0.1740) 182 | 1.74 | 1.85| 035 | 044 | 0.14 | 0.68 | 0.63 | 0.59 | 17.76 | 11.57 | 31.24 9 3 31
1.15 0.1846 0.9945
100 232 (0.16) | (0.1513) | (0.1749) 169 | 169 | 1.73 | 031 | 0.31 | 0.18 | 0.69 | 0.69 | 0.62 | 22.86 | 22.44 | 38.74 | 16 16 26

*A) Estimating a single calibration factor (C); B) Estimating a calibration function; C) Directly estimating a model using the calibration data

106

SBNIIBASS YselD pue sadAl ysel) o) S|9PO uonoipaid paroidwi


http://www.nap.edu/26164

‘paniasal Sybu | "S22uaIds Jo Awapeay [euonen 1ybuAdod

Table 6-3: Results for Rural Two-Lane Three-Leg Stop-controlled Intersections

Calibration MAD Modified R2 overdispersion CURE max dev CURE % dev
Function parameter
Mo, OB c Parameters Option” Opti Opti Opti Opti
Sites | Crashes | (CV) : ption ption ption ption ption
a A B C A B C A B C A B C A B C
(s.e.) (s.e.)
1.31 1.7636 0.4575
50 97 (0.23) | (0.1637) | (0.1848) 1.71 | 1.63 1.64 | 0.00 0.19 | 0.18 | 0.94 0.71 | 0.72 | 19.93 4.73 471 | 46 | 1 2
1.22 1.5785 0.5806
75 145 (0.21) | (0.1452) (0.16) 1.74 | 1.68 1.69 | 0.22 0.22 | 0.24 | 0.88 0.79 | 0.79 | 21.45 | 41.28 | 16,53 | 46 | 1 1
1.23 1.63 0.5482
100 194 (0.18) (0.123) | (0.1413) 1.77 | 1.67 1.67 | 0.11 0.19 | 0.26 | 0.91 0.77 | 0.72 | 37.17 | 15.33 | 13.63 | 49 1 2
1.29 1.6714 0.5797
125 247 (0.15) | (0.1051) | (0.1249) 1.74 | 1.65 1.65 | 0.09 0.22 | 0.24 | 0.80 0.68 | 0.66 | 44.67 | 16.09 | 17.74 | 58 | 1 1

*A) Estimating a single calibration factor (C); B) Estimating a calibration function; C) Directly estimating a model using the calibration data

Table 6-4: Calibration results using Texas 2012 data for calibration of SPFs using Texas 2009-2011 data for undivided highway

segments
Calibration Factor (C) Calibration Function
Data | Crash |Observed | HSM | ., (HSM, 2010) Ny redicted = a X (Unadjusted Prediction)®
Type Crashes Pred. - -
c(cv) N Fitted MAD a (SE) b (SE) N Fitted MAD
TX 2012 Total 0.836 0.825 0.838

1 233.2 . 1 .542 188.964 .554

(n=402) | KABCO % 33.28 1 0583 1 4511) % 105 (0.089) (0.084) 88.96 0.55

Table 6-5: Calibration results using Ohio, Washington, and lllinois data for calibration of California SPFs for divided highway

segments.
Calibration Factor (C) Calibration Function
Data Crash Observed HSM MAD (HSM, 2010) Npredictea = @ X (Unadjusted Prediction)®
Type Crashes Pred. - -
c(cv) N Fitted MAD a (SE) b (SE) N Fitted MAD
OH Total 0.988 0.991 1.003
(n=407) KABCO 856 866.12 | 1.348 (0.100) 856 1.345 (0.066) (0.058) 861.064 1.346
WA Total 1.655 1.969 0.848
(n=216) KABCO 730 441.15 | 2.007 (0.144) 730 1.978 (0.141) (0.065) 733.060 1.939
IL Total 0.727 0.747 1.046
(n=592) KABCO 170 233.75 | 0.463 (0.210) 170 0.413 (0.102) (0.131) 169.461 0.411
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6.4 CONCLUSIONS ON CALIBRATION EXERCISE

6.4.1

Summary of Findings

The results of the analyses indicate no consistency with regard to which option (calibration factor,
calibration function, or directly estimated model) will perform best for a given sample size. For some
cases, a small sample that is estimated using some criterion (for example, maximum CV of the calibration
factor) may work; for others, it may not. What sample size will work is also highly variable, and dependent
on factors including the average crash rate and amount of variation of site characteristics in the data.

It is concluded that, at present, the required sample size for any of the calibration options can only be
determined by trial and error, and the current HSM sample size guidance and subsequently developed
resources (Bahar et al. 2014) can provide reasonable practical limits for the amount of data that may
practically be collected for the start of a calibration exercise.

Other key calibration issues were investigated but could not be resolved in this research. They included
the following:

1)

2)

6.4.2

Should the calibration factor be estimated for the base models rather than for the HSM algorithm
as a whole (that is, applying CMFs to the base models), as is the case at the moment? The
recommendation is to maintain the status quo for site types, crash types, and crash severities for
which there are enough CMFs to apply the algorithm, and to conduct further research on this
topic. For situations in which there are few or no CMFs, the recommendation is to estimate the
calibration factor from the base models.

Should the overdispersion parameter be calibrated? The current HSM methodology does not
suggest this. It is recommended that future research consider basing this decision on an estimate
of the standard deviation of the calibrated overdispersion parameter. Future research will also
need to consider how the overdispersion parameter should be calibrated for a calibration
function.

Recommended Calibration Procedure Update

On the basis of these conclusions, the following is recommended as an updated calibration procedure as
depicted in Figure 6-1.

1.

For site types, crash types, and crash severities for which there are enough CMFs to apply the
HSM algorithm, perform the calibration for the algorithm as a whole (that is, by applying CMFs to
the base models). For other situations, perform the calibration for the base models.

Start with an available sample that is desirably random and at least as large as that recommended
in the HSM.

Perform the calibration first with a constant calibration factor. The FHWA Calibrator tool can be
used.

Assess the success of the calibration. The user guide for the FHWA Calibrator tool provides
guidance on how success can be assessed with CURE plots and the CV of the calibration factor.
The latter measure is estimated and assessed in the Calibrator tool based on guidance provided
in Bahar et al. (2014), Appendix B. That guidance can be used instead of the tool.

If the sample is insufficient, then incrementally assemble additional data for additional sites and
assess until a successful calibration is achieved.
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6.

0 If a successful calibration cannot be achieved with the entire sample available for total
crashes, then the calibration results for a similar site type (from which a successful
calibration was achieved) may be assumed to apply.

0 If a successful calibration cannot be achieved with the entire sample available for a
specific crash type or severity, then the calibration results for total crashes, however
obtained, may be assumed to apply.

Estimate a calibration function using the approach in Srinivasan et al. (2016), and adopt it in
preference to the calibration factor, if it is successfully estimated and performs better.

If appropriate skills are available or could be acquired, it is recommended to try to estimate
directly a model with the final calibration dataset and adopt it if it is successfully estimated and
performs better than the calibration factor and calibration function. The FHWA Calibrator tool can
be used in this performance assessment.
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Figure 6-1: Suggested Calibration Process
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7 FINDINGS AND CONCLUSIONS

7.1 PROPOSED MODELS AND PROCEDURES FOR MANUAL

This report presents SPFs that were estimated to predict crashes by type and severity for the facility types
covered by the HSM. To optimize the accuracy of the crash predictions, it would have been ideal to
estimate SPFs for all of the crash types and severities need as base conditions for applying CMFs.
Unfortunately, because the numbers of crashes of various types and severities were limited in the
databases available for the project, we could not estimate models for all the specific types—for example,
for head-on and rear-end crashes within the opposite- and same-direction crash type categories,
respectively. Some models also have overdispersion parameters high enough to cast doubt on their
accuracy for prediction or coefficients on the volume predictors (AADT) that are not statistically significant
at 90 percent confidence. We address these cases by reporting average proportions of specific crash types
within the broader crash type category for which models were estimated. These proportions can be used
where the predicted models are not available, or where the analyst chooses not to use them. This
approach will still be more accurate than that provided in the current HSM.

While the initial scope of work had proposed to estimate probabilistic models for crash severity, based on
theoretical and practical considerations about the application of such models in the HSM procedures, we
chose not to use this approach. Predictions of crash severity may be calculated using the count models
for severity that have been estimated and presented here.

The data sources for estimation and validation for each model by facility are listed in Table 7-1. The rest

of this section identifies the models that were estimated and will be proposed for inclusion in the HSM,

by facility type. It also lists the crash types and severity for which models were NOT estimated, for each
facility type that might require proportions to be estimated. For these situations, we provide default
proportions from the data for each facility type, although individual jurisdictions may calculate
proportions from their own data for more accurate local predictions. Finally, the section summarizes
findings from revisiting the calibration procedures in the HSM in light of the newly estimated models.

Table 7-1: Data Sources (States) for SPF Estimation and Validation, by Facility Type

Facility Tvoe Road Segments Road Segments Intersections Intersections

v TYP Estimation Validation Estimation Validation
Two-lane rural Washington Ohio 3ST&4ST: Minnesota | 3ST&4ST: Ohio
highways g 45G: Ohio 45G: Minnesota
Multilane rural 4U: Texas jg I-IrI(ie:siss 3ST&A4ST: Minnesota | 3ST&4ST: Ohio
highways 4D: California Washington 45G: Ohio 4SG: Minnesota
Urbap/suburban Ohio Minnesota Ohio North Carolina
arterials

*Data from 2009-11 were used for estimation and from 2012 for validation.

7.1.1 Two-Lane Rural Highway Models
Figure 7-1 identifies the crash models estimated for segments on two-lane rural highways. SPFs were
estimated for four levels of severity (KABCO, KABC, KAB, and KA) for total, same-direction, opposite-

111

Copyright National Academy of Sciences. All rights reserved.


http://www.nap.edu/26164

Improved Prediction Models for Crash Types and Crash Severities

direction, and single-vehicle crashes. Models for intersecting-direction crashes were not estimated, as
they were all assigned to intersections.

Figure 7-2 lists the specific crash types included in each of the broader crash type categories that were
estimated. Total crashes include all of these crash types. If predictions of crashes of any of these specific
types are needed for applying CMFs, proportions of them within the aggregate crash types (those in the
left column of the figure) will be required and provided in the proposed HSM content.

Figure 7-3 illustrates the crash models estimated for intersections (all types) on two-lane rural highways.
Models were estimated for intersecting-direction crashes as well as for the types estimated for segments
and for the same four levels of severity.

Similarly, Figure 7-4 lists the specific crash types included in each of the broader crash type categories that
were estimated for two-lane rural highway intersections. Again, total crashes include all of these crash
types, and their proportions within the aggregate crash types will be required for estimating them.

Same Opposite Single
Direction Direction Vehicle
Crashes Crashes Crashes

KABCO |  KABCO! KABCO! | KABCO
KABC | | KABC | | KABC | | KABC
KAB KAB KAB KAB

Total
Crashes

KA KA KA KA

Figure 7-1: Crash Types Estimated for Segments on Two-Lane Rural Highways
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Same e Rear End
Direction < | Sideswipe Same Direction
Crashes e Turning Same Direction
-
f‘
Opposite * Head On
Direction < | Sideswipe Opposite Direction
Crashes e Turning Opposite Direction
-
~
Single * Fixed Object
Vehicle < [e Roll Over
Crashes e Moving Object
.

Figure 7-2: Specific Crash Types Included in the Estimated Crash Types (Rural 2U).

Total .Sam_e Int(_arse(?ting O_ppos:ite Single
Crashes Direction Direction Direction Vehicle
Crashes Crashes Crashes Crashes
KABCO | KABCO KABCO KABCO KABCO
| |
KABC KABC KABC KABC KABC
| | ) |
KAB KAB KAB J KAB KAB
| | |
KA || KA | KA KA KA
| | |
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f
Same e Rear End
Direction < e Sideswipe Same Direction
Crashes 9 e Turning Same Direction
: ~
Intersect_lng e Angle
Direction < e Turning | i Directi
Crashes L urning Intersecting Direction
f
Opposite e Head On
Direction < e Sideswipe Opposite Direction
Crashes L e Turning Opposite Direction
(‘
Single Vehic] e Fixed Object
ingle Vehicle
Crashes < * Roll Qver ,
_ e Moving Object

Figure 7-4: Specific Crash Types included in the Estimated Crash Types (Rural 3ST, 4ST and
4SG)

7.1.2 Multilane Rural Highway Models

Figure 7-5 identifies the crash models estimated for divided and undivided segments on multilane rural
highways. Models were estimated for the same combinations of type and severity as for two-lane rural
highways, with two exceptions. First, due to the small number of same-direction KA crashes, we could not
estimate a model for that combination. Second, we attempted models for intersecting-direction crashes
for all severity levels, but due to the small number of crashes, only the model for all severity levels was
successfully estimated. Figure 7-4 lists the specific crash types included in each of these aggregated types
(same as for two-lane rural highway intersection models). Again, the total crash category includes all of
the crash types and proportions that will need to be computed for any specific crash types of interest
within the broader categories for which models were estimated.
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Total
Crashes

Same
Direction
Crashes

KABCO

KABC

KAB

KA

KABCO

\ ——

KABC

M—

KAB

Intersecting
Direction
Crashes

Opposite
Direction
Crashes

KABCO

KABC

KAB

KA

Single
Vehicle
Crashes

KABCO

KABC

VR
KAB

KA |
G

Figure 7-5: Crash Types Estimated for Divided and Undivided Segments on Multilane Rural

Highways

Intersection models cover the same crash types as for rural two-lane highway intersections, as depicted

in Figure 7-3 and Figure 7-4.

7.1.3 Urban/Suburban Arterial Models

Final base condition models were estimated for urban/suburban arterial segments for the following crash

types:
e Total
e KABC
e KAB
o KA

e Multiple-vehicle non-driveway related

e Rearend

e Sideswipe same direction
e Head-on + sideswipe opposite direction
e Multiple-vehicle non-driveway other

e Single vehicle

e Nighttime

e Multiple-vehicle driveway
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Note that crashes were estimated by type or severity level, not in combination, as was done for the rural
facility types. The reason for this is that, for many combinations of crash type and severity, there simply
were not enough crashes to estimate viable models. The combination of crash type and severity is not
frequently needed to apply HSM methods, so it is recommended that when predictions of such
combinations are needed, proportions may be calculated to allocate crash type predictions among the
various severity levels.

For urban/suburban intersections, we estimated models for the same combinations of crash type and
severity as for the rural intersection facilities (see Figure 7-3). As noted, however, models for many of the
combinations could not be estimated due to small sample sizes or odd estimation results. Figure 7-6
depicts the combinations that could not be estimated for each type of intersection.
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Figure 7-6: Crash Type and Severity SPFs that Were Not Estimated for Urban/Suburban
Intersections
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7.1.4 Revisit of the Calibration Procedure

The project team revisited the current HSM calibration procedure and evaluated its performance relative
to sample size and to using a constant or variable calibration factor (or calibration function). In addition,
we considered the issues of calibrating models based on crash predictions with and without CMFs and
calibration of the overdispersion parameter. The recommendation is to continue the current procedure
in the HSM of calibrating with the CMFs, assuming most of the CMFs for doing so are available. Otherwise,
as may be the case for many crash type and severity models at the moment, the calibration may be done
without applying CMFs. The issue of calibrating the overdispersion parameter requires further research.

The findings show that the calibration results are definitely sensitive to sample size, but not always in
ways that might be expected. The calibration function did not work well with small sample sizes because
the optimization procedure to estimate it failed to converge. In general, the more complex the calibration
approach, the more data are required to apply it successfully. Unsurprisingly, the sample sizes that
resulted in the best calibration results would also be large enough to estimate jurisdiction-specific SPFs.
This latter option would be preferred, when possible, to get the most accurate predictions for application
in a given jurisdiction. But the findings here show that, in many cases, reasonable predictions are also
possible following the HSM procedures, with even a constant calibration factor and modest calibration
sample sizes.

7.2 CONCLUSIONS

In conclusion, this project has estimated new prediction models for crash types and severity that promise
better predictive results than the current HSM-recommended combination of base models for total
crashes with proportional factors for allocating among crash type and severity. When sample size
permitted, extensive SPFs developed by severity and type are provided for detailed analytics of safety
rather than fixed proportions as the current HSM provides. They are estimated with much newer crash
data than the models in the HSM, which were estimated using data 10 to 15 years old. These updated
models, including ones for total crashes, reflect more current relationships between traffic exposure and
crash occurrence, as well as differences in the shape of the SPF viz. the traffic exposure from one crash
type or severity level to another. The project has also revisited the predictive method calibration
procedure in the HSM and offers refinements to the recommended calibration procedure.

It is noted that estimation and application of crash prediction models is dependent upon having datasets
of sufficient size and quality. It was not possible to estimate models for K only crashes for any crash types
or in total for any facility type due to the small number of these crashes in any of the data sets. For some
crash types, such as same direction crashes, KA crash models also could not be estimated. Some of these
crash type and severity combinations are extremely rare due to their nature (e.g., same direction KA
crashes), so it is hard to identify future research directions that could overcome this challenge.

It is also noted that many of the roadway characteristic variables that are necessary for estimating and
applying these models, for example numbers of driveways of different types and intersection skew angles,
are not routinely archived by all transportation agencies. For estimation and validation of these models it
was necessary to engage in data collection efforts to augment data provided by the transportation
agencies that were used in the project. In order to use these prediction procedures, most agencies will
likely need to augment their own data archives with additional roadway characteristics.
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This project also provides, in Appendix C, content for incorporating the new estimated models and
calibration recommendations into a second edition of the HSM.
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