The National Academies of MEDICINE

THE NATIONAL ACADEMIES PRESS

This PDF is available at http://nap.edu/26164

Improved Prediction Models for Crash Types and Crash Severities (2021)

DETAILS

138 pages | 8.5 x 11 | PAPERBACK ISBN 978-0-309-48959-1 | DOI 10.17226/26164

CONTRIBUTORS

GET THIS BOOK

FIND RELATED TITLES

John N. Ivan, Sha Al Mamun, Nalini Ravishanker, University of Connecticut, Bhagwant Persaud, Craig Lyon, Persaud and Lyon, Inc., Raghavan Srinivasan, Bo Lan, Sarah Smith, Taha Saleem, University of North Carolina, and Mohamed Abdel-Aty, Jaeyoung Lee, Ahmed Farid, Jung-Han Wang, University of Central Florida; National Cooperative Highway Research Program; Transportation Research Board; National Academies of Sciences, Engineering, and Medicine **SUGGESTED CITATION**

National Academies of Sciences, Engineering, and Medicine 2021. *Improved Prediction Models for Crash Types and Crash Severities*. Washington, DC: The National Academies Press. https://doi.org/10.17226/26164.

Visit the National Academies Press at NAP.edu and login or register to get:

- Access to free PDF downloads of thousands of scientific reports
- 10% off the price of print titles
- Email or social media notifications of new titles related to your interests
- Special offers and discounts

Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. (Request Permission) Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences.

Copyright © National Academy of Sciences. All rights reserved.

NCHRP

Web-Only Document 295:

IMPROVED PREDICTION MODELS FOR CRASH TYPES AND CRASH SEVERITIES

John N. Ivan Sha Al Mamun Nalini Ravishanker University of Connecticut Storrs, CT

Bhagwant Persaud Craig Lyon Persaud and Lyon, Inc. Toronto, ON, Canada Raghavan Srinivasan Bo Lan Sarah Smith Taha Saleem University of North Carolina Chapel Hill, NC

Mohamed Abdel-Aty Jaeyoung Lee Ahmed Farid Jung-Han Wang University of Central Florida Orlando, FL

Contractor's Final Report for NCHRP Project 17-62 Submitted July 2018

NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM

Systematic, well-designed, and implementable research is the most effective way to solve many problems facing state departments of transportation (DOTs) administrators and engineers. Often, highway problems are of local or regional interest and can best be studied by state DOTs individually or in cooperation with their state universities and others. However, the accelerating growth of highway transportation results in increasingly complex problems of wide interest to highway authorities. These problems are best studied through a coordinated program of cooperative research.

Recognizing this need, the leadership of the American Association of State Highway and Transportation Officials (AASHTO) in 1962 initiated an objective national highway research program using modern scientific techniques—the National Cooperative Highway Research Program (NCHRP). NCHRP is supported on a continuing basis by funds from participating member states of AASHTO and receives the full cooperation and support of the Federal Highway Administration (FHWA), United States Department of Transportation, under Agreement No. 693JJ31950003.

COPYRIGHT INFORMATION

Authors herein are responsible for the authenticity of their materials and for obtaining written permissions from publishers or persons who own the copyright to any previously published or copyrighted material used herein.

Cooperative Research Programs (CRP) grants permission to reproduce material in this publication for classroom and not-for-profit purposes. Permission is given with the understanding that none of the material will be used to imply TRB, AASHTO, FAA, FHWA, FTA, GHSA, NHTSA, or TDC endorsement of a particular product, method, or practice. It is expected that those reproducing the material in this document for educational and not-for-profit uses will give appropriate acknowledgment of the source of any reprinted or reproduced material. For other uses of the material, request permission from CRP.

DISCLAIMER

The opinions and conclusions expressed or implied in this report are those of the researchers who performed the research. They are not necessarily those of the Transportation Research Board; the National Academies of Sciences, Engineering, and Medicine; the FHWA; or the program sponsors.

The information contained in this document was taken directly from the submission of the author(s). This material has not been edited by TRB.

The National Academies of SCIENCES • ENGINEERING • MEDICINE

Copyright National Academy of Sciences. All rights reserved.

The National Academies of SCIENCES • ENGINEERING • MEDICINE

The **National Academy of Sciences** was established in 1863 by an Act of Congress, signed by President Lincoln, as a private, nongovernmental institution to advise the nation on issues related to science and technology. Members are elected by their peers for outstanding contributions to research. Dr. Marcia McNutt is president.

The **National Academy of Engineering** was established in 1964 under the charter of the National Academy of Sciences to bring the practices of engineering to advising the nation. Members are elected by their peers for extraordinary contributions to engineering. Dr. John L. Anderson is president.

The **National Academy of Medicine** (formerly the Institute of Medicine) was established in 1970 under the charter of the National Academy of Sciences to advise the nation on medical and health issues. Members are elected by their peers for distinguished contributions to medicine and health. Dr. Victor J. Dzau is president.

The three Academies work together as the **National Academies of Sciences**, **Engineering**, and **Medicine** to provide independent, objective analysis and advice to the nation and conduct other activities to solve complex problems and inform public policy decisions. The National Academies also encourage education and research, recognize outstanding contributions to knowledge, and increase public understanding in matters of science, engineering, and medicine.

Learn more about the National Academies of Sciences, Engineering, and Medicine at www.nationalacademies.org.

The **Transportation Research Board** is one of seven major programs of the National Academies of Sciences, Engineering, and Medicine. The mission of the Transportation Research Board is to provide leadership in transportation improvements and innovation through trusted, timely, impartial, and evidence-based information exchange, research, and advice regarding all modes of transportation. The Board's varied activities annually engage about 8,000 engineers, scientists, and other transportation researchers and practitioners from the public and private sectors and academia, all of whom contribute their expertise in the public interest. The program is supported by state transportation departments, federal agencies including the component administrations of the U.S. Department of Transportation, and other organizations and individuals interested in the development of transportation.

Learn more about the Transportation Research Board at www.TRB.org.

COOPERATIVE RESEARCH PROGRAMS

CRP STAFF FOR NCHRP WEB-ONLY DOCUMENT 295

Christopher J. Hedges, Director, Cooperative Research Programs Lori L. Sundstrom, Deputy Director, Cooperative Research Programs David Jared, Senior Program Officer Hana Vagnerova, Senior Program Assistant Eileen P. Delaney, Director of Publications Natalie Barnes, Associate Director of Publications Kathleen Mion, Senior Editorial Assistant

NCHRP PROJECT 17-62 PANEL Field of Traffic—Area of Safety

Richard Retting, Sam Schwartz Consulting, Washington, DC (Chair) Peter A. Aiyuk, Nevada DOT, Carson City, NV Larry J. Colclasure, Maldonado-Burkett Intelligent Transportation Systems, Austin, TX Gianluca Dell'Acqua, Universita degli Studi di Napoli Federico II, Naples Reza Jafari, Road Safety and Transportation Solutions, Inc., Raleigh, NC In-Kyu Lim, Virginia Department of Transportation, Richmond, VA Neil M. May, City of Madison, Madison, WI John Milton, Washington State Department of Transportation, Olympia, WA Brian Murphy, North Carolina Department of Transportation, Garner, NC Craig Thor, FHWA Liaison Kelly Hardy, AASHTO Liaison Bernardo Kleiner, TRB Liaison

CONTENTS

Sι	Summaryxvi			
1	В	Back	ground1	
	1.1		Project Background	
	1.2		Project Objectives	
2	A	hal	lysis Approaches	
	2.1		Scope of Report	
	2.2		Crash Type Definitions	
	2	2.2.1	1 Crash Types	
	2	2.2.2	2 Delineation of Intersection versus Segment Crashes	
	2.3		Model Estimation Approach	
	2	2.3.1	1 Crash Count Models	
	2	2.3.2	2 Alternatives for Model Form	
	2	.3.3	3 Model Estimation and Fit Statistics	
	2	.3.4	4 Crash Severity Modeling9	
	2.4		Estimation and Validation Data10	
3	Ν	Лod	lels for Two-Lane Rural Highways12	
	3.1		Roadway Segments	
	3	8.1.1	1 Estimation and Validation Data12	
	3	8.1.2	2 Estimated Models14	
	3	8.1.3	3 Validation of Models	
	3.2		Intersections	
	3	8.2.1	1 Estimation and Validation Data18	
	3	8.2.2	2 Estimated Models	
	3	3.2.3	3 Validation of Models	
4	Ν	Лоd	lels for Multilane Rural Highways35	
	4.1		Roadway Segments	
	4	.1.1	1 Estimation and Validation Data	
	4	.1.2	2 Estimated Models 40	
	4	.1.3	3 Validation of Models	

	4.2	Inte	ersections	47
	4.2.	1	Estimation and Validation Data	47
	4.2.	2	Estimated Models	54
	4.2.	3	Validation of Models	54
5	Мос	dels f	for Urban and Suburban Arterials	61
	5.1	Roa	idway Segments	61
	5.1.	1	Estimation Data	61
	5.1.	2	Estimated Models	67
	5.1.	3	Validation of Models	68
	5.2	Inte	ersections	83
	5.2.	1	Estimation Data	83
	5.2.	2	Estimated Models	89
	5.2.	3	Validation of Models	95
6	Rev	isitin	g the HSM Calibration Approach	. 102
	6.1	Арр	proaches Considered	. 102
	6.1.1		Background on HSM Approach	. 102
	6.1.2		Approach 1	. 103
	6.1.	3	Approach 2	. 103
	6.2	Арр	proach 1 Results	. 103
	6.2.	1	Urban Four-Lane Divided Segments	. 103
	6.2.	2	Urban Two-Lane Undivided Segments	. 104
	6.2.	3	Rural Two-Lane, Three-Leg Stop-Controlled Intersections	. 104
	6.3	Арр	proach 2 Results	. 105
	6.4	Cor	clusions on Calibration Exercise	. 108
	6.4.	1	Summary of Findings	. 108
	6.4.	2	Recommended Calibration Procedure Update	. 108
7	Find	lings	and Conclusions	. 111
	7.1	Pro	posed Models and Procedures for Manual	. 111
	7.1.	1	Two-Lane Rural Highway Models	. 111
	7.1.	2	Multilane Rural Highway Models	. 114
	7.1.	3	Urban/Suburban Arterial Models	. 115
	7.1.	4	Revisit of the Calibration Procedure	. 118

7.2 Con	clusions	118
8 Reference	es	
Appendix A	Average Condition Models	A-1
Appendix B	Crash Severities – Ordered Probit Fractional Split Modeling Approach	B-1
Appendix C	Draft Content for Highway Safety Manual, 2nd Edition	C-1

Appendices A, B, and C are not published here, but are available on the TRB website (www.TRB.org) by searching for "NCHRP Web-Only Document 295".

LIST OF TABLES

Table 2-1: Base Condition Crash Type Models Estimated for Each Facility Type	5
Table 2-2: Data Used for Estimation and Validation	11
Table 3-1: HSM Base Conditions and Data Availability, Two-Lane Undivided (2U) Segments	12
Table 3-2: Descriptive Statistics for Base Condition SPF Estimation, Two-Lane Undivided (2U) Segments	;
Table 3-3: Descriptive Statistics for Base Condition Validation Data, Two-Lane Undivided (2U) Segment	13 s
Table 3-4: Base Condition SPEs. Two-Lane Lindivided (211) Segments	14
Table 3-5: Calibration and Validation of Washington SPFs Using Ohio Data, Two-Lane Undivided (2U)	13
Segments	17
Table 3-6: HSM Base Conditions and Data Availability, Two-Lane Intersections	18
Table 3-7: Base Condition Criteria and Data Availability, Two-Lane Four-Leg Signal-Controlled (4SG)	18
Table 3-8: Descriptive Statistics for Base Condition SPFs, Two-Lane Three-Leg Stop-Controlled (3ST)	10
Table 3-9: Descriptive Statistics for Base Condition Validation Data, Two-Lane Three-Leg Stop-Controlle	3d
Table 3-10: Descriptive Statistics for Base Condition SPFs, Two-Lane Four-Leg Stop-Controlled (4ST)	20
Intersections	21
Table 3-11: Descriptive Statistics for Base Condition Validation Data, Two-Lane Four-Leg Stop-Controlle (4ST) Intersections	ed 22
Table 3-12: Descriptive Statistics for Modified Base Condition SPFs, Two-Lane Four-Leg Signal-Controlle (4SG) Intersections	ed 23
Table 3-13: Descriptive Statistics for Modified Base Condition Validation Data, Two-Lane Four-Leg Sign Controlled (4SG) Intersections	al- 24
Table 3-14: Base Condition SPFs, Two-Lane Three-Leg Stop-Controlled (3ST) Intersections	26
Table 3-15: Base Condition SPF Using Poisson Distribution, Two-Lane Three-Leg Stop-Controlled (3ST)	27
Table 3-16: Base Condition SPEs. Two-Lane Four-Leg Stop-Controlled (4ST) Intersections	28
Table 3-17: Base Condition SPFs Using Poisson Distribution, Two-Lane Four-Leg Stop-Controlled (4ST)	20
Table 2-18: Modified Base Condition SPEs. Two-Lane Four-Lag Signal-Controlled (ASG) Intersections	20
Table 3-19: Modified Base Condition SPEs Using Poisson Distribution. Two-Lane Four-Leg Signal-	50
Controlled (4SG) Intersections	31
Table 3-20: Calibration and Validation of Minnesota SPEs Using Obio Data. Three-Leg Ston-Controlled	51
(3ST) Intersections	32
Table 3-21: Calibration and Validation of Minnesota SPFs Using Ohio Data. Four-Leg Stop-Controlled	
(4ST) Intersections	33
Table 3-22: Calibration and Validation of OH SPFs using MN Data (4SG)	34
Table 4-1: HSM Base Conditions and Data Availability, Four-Lane Undivided (4U) Segments	35
Table 4-2: Sample Size by Conditions, Four-Lane Undivided (4U) Segments	36
Table 4-3: Descriptive Statistics for Base Condition SPFs, Four-Lane Undivided (4U) Segments	36

Table 4-4: Descriptive Statistics for Base Condition Validation Data, Four-Lane Undivided (4U) Segments
Table 4-5: HSM Base Conditions and Data Availability, Four-Lane Divided (4D) Segments
Table 4-6: Sample Size by Condition, Four-Lane Divided (4D) Segments 38
Table 4-7: Descriptive Statistics for Base Condition SPFs, Four-Lane Divided (4D) Segments
Table 4-8: Descriptive Statistics for Base Condition Validation Data, Four-Lane Divided (4D) Segments -
Illinois
Table 4-9: Descriptive Statistics for Base Condition Validation Data, Four-Lane Divided (4D) Segments -
Washington
Table 4-10: Base Condition SPFs, Four-Lane Undivided (4U) Segments
Table 4-11: Base Condition SPFs, Four-Lane Divided (4D) Segments 42
Table 4-12: Calibration of the Texas (2009–11) Safety Performance Functions Using the Texas (2012)
Data, Multilane Undivided Segments Base Conditions
Table 4-13: Calibration of the California (2009–10) Safety Performance Functions Using the Illinois
(2009–11) Data, Multilane Divided Segments Base Conditions
Table 4-14: Calibration of the California (2009–10) Safety Performance Functions Using the Washington
(2009–11) Data, Multilane Divided Segments Base Conditions
Table 4-15: HSM Base Conditions and Data Availability, Multilane Intersections 47
Table 4-16: Descriptive Statistics for Base Condition SPFs, Multilane Three-Leg Stop-Controlled (3ST)
Intersections
Table 4-17: Descriptive Statistics for Base Condition Validation Data, Multilane Three-Leg Stop-
Controlled (3ST) Intersections
Table 4-18: Descriptive Statistics for Base Condition SPFs, Multilane Four-Leg Stop-Controlled (4ST)
Intersections
Table 4-19: Descriptive Statistics for Base Condition Validation Data, Multilane Four-Leg Stop-Controlled
(4ST) Intersections
Table 4-20: Base Condition Criteria and Data Availability, Multilane Four-Leg Signal-Controlled (4SG)
Intersections
Table 4-21: Descriptive Statistics for Base Condition SPFs, Multilane Four-Leg Signal-Controlled (4SG)
Intersections
Table 4-22: Descriptive Statistics for Base Condition Validation Data, Multilane Four-Leg Signal-
Controlled (4SG) Intersections
Table 4-23: Base Condition SPFs, Multilane Three-Leg Stop-Controlled (3ST) Intersections 55
Table 4-24: Base Condition SPFs, Multilane Four-Leg Stop-Controlled (4ST) Intersections 56
Table 4-25: Base Condition SPFs, Multilane Four-Leg Signal-Controlled (4SG) Intersections 57
Table 4-26: Validation of the Minnesota (2009–11) Safety Performance Functions Using the Ohio (2009–
11) Data, Three-Leg Stop Controlled (3ST) Intersections
Table 4-27: Calibration of the Minnesota (2009–11) Safety Performance Functions Using the Ohio (2009–
11) Data, Four-Leg Stop-Controlled (4ST) Intersections
Table 4-28: Calibration of the Ohio (2009–11) Safety Performance Functions Using the Minnesota (2009–
11) Data, Four-Leg Signal-Controlled (4SG) Intersections
Table 5-1: Ohio Segment Length and Crash Type Totals for Five-Year Period for Base Condition Sites
(Urban/Suburban Arterial Segments)

(Urban/Suburban Arterial Segments) 64
Table 5-3: OH Segment Continuous Variable Statistics for Base Condition Sites (Urban/Suburban Arterial
Segments)
Table 5-4: OH Segment Categorical Variable Total Mileage (mi.) for Base Condition Sites
(Urban/Suburban Arterial Segments)
Table 5-5: Total (TOT) for Base Conditions Option 1 (Urban/Suburban Arterial Segments)
Table 5-6: Total (TOT) for Base Conditions Option 2 (Urban/Suburban Arterial Segments)
Table 5-7: Multiple-Vehicle Non-Driveway (MVN) for Base Conditions (Urban/Suburban Arterial
Segments)
Table 5-8: Rear-End (RE) for Base Conditions (Urban/Suburban Arterial Segments)
Table 5-9: Sideswipe-Same-Direction (SSD) for Base Conditions (Urban/Suburban Arterial Segments)71
Table 5-10: Head-On + Sideswipe-Opposite-Direction (HO+SOD) for Base Conditions (Urban/Suburban
Arterial Segments)71
Table 5-11: Multiple-Vehicle Non-Driveway Other (MVN OTHER) for Base Conditions (Urban/Suburban
Arterial Segments)72
Table 5-12: Single-Vehicle (SV) for Base Conditions (Urban/Suburban Arterial Segments)72
Table 5-13: Nighttime (NIGHT) for Base Conditions (Option 1) (Urban/Suburban Arterial Segments) 73
Table 5-14: Nighttime (NIGHT) for Base Conditions (Option 2) (Urban/Suburban Arterial Segments) 73
Table 5-15: Multi-Vehicle Driveway (MVD) for Base Conditions (Option 1) (Urban/Suburban Arterial
Segments)
Table 5-16: Multi-Vehicle Driveway (MVD) for Base Conditions (Option 2) (Urban/Suburban Arterial
Segments)
Table 5-17: MN Segment Length and Crash Type Totals for 5 Year Period for Base Condition Sites
(Lishan (Cuburban Artanial Comparts)
(Orban/Suburban Arterial Segments)
Table 5-18: Validation of Initial 2U Base Condition Models
Table 5-18: Validation of Initial 2U Base Condition Models 76 Table 5-19: Validation of 3T Base Condition Models 76
Table 5-18: Validation of Initial 2U Base Condition Models 76 Table 5-19: Validation of 3T Base Condition Models 76 Table 5-20: Validation of 4D Base Condition Models 76
Table 5-18: Validation of Initial 2U Base Condition Models76Table 5-19: Validation of 3T Base Condition Models76Table 5-20: Validation of 4D Base Condition Models76Table 5-21: Validation of 4U Base Condition Models76Table 5-21: Validation of 4U Base Condition Models77
Table 5-18: Validation of Initial 2U Base Condition Models75Table 5-19: Validation of 3T Base Condition Models76Table 5-20: Validation of 4D Base Condition Models76Table 5-21: Validation of 4U Base Condition Models77Table 5-21: Validation of 4U Base Condition Models77Table 5-22: Range of Base Model Variables for Final Urban/Suburban Segment Models77
Table 5-18: Validation of Initial 2U Base Condition Models76Table 5-19: Validation of 3T Base Condition Models76Table 5-20: Validation of 4D Base Condition Models76Table 5-21: Validation of 4U Base Condition Models76Table 5-21: Validation of 4U Base Condition Models77Table 5-22: Range of Base Model Variables for Final Urban/Suburban Segment Models77Table 5-23: Total for Base Conditions Combined Data (Urban/Suburban Arterial Segments)78
Table 5-18: Validation of Initial 2U Base Condition Models76Table 5-19: Validation of 3T Base Condition Models76Table 5-20: Validation of 4D Base Condition Models76Table 5-21: Validation of 4U Base Condition Models76Table 5-21: Validation of 4U Base Condition Models77Table 5-22: Range of Base Model Variables for Final Urban/Suburban Segment Models77Table 5-23: Total for Base Conditions Combined Data (Urban/Suburban Arterial Segments)78Table 5-24: KABC for Base Conditions Combined Data (Urban/Suburban Arterial Segments)78
Table 5-18: Validation of Initial 2U Base Condition Models76Table 5-19: Validation of 3T Base Condition Models76Table 5-20: Validation of 4D Base Condition Models76Table 5-21: Validation of 4U Base Condition Models76Table 5-22: Range of Base Model Variables for Final Urban/Suburban Segment Models77Table 5-23: Total for Base Conditions Combined Data (Urban/Suburban Arterial Segments)78Table 5-24: KABC for Base Conditions Combined Data (Urban/Suburban Arterial Segments)78Table 5-25: KAB for Base Conditions Combined Data (Urban/Suburban Arterial Segments)78
Table 5-18: Validation of Initial 2U Base Condition Models76Table 5-19: Validation of 3T Base Condition Models76Table 5-20: Validation of 4D Base Condition Models76Table 5-21: Validation of 4U Base Condition Models77Table 5-22: Range of Base Model Variables for Final Urban/Suburban Segment Models77Table 5-23: Total for Base Conditions Combined Data (Urban/Suburban Arterial Segments)78Table 5-24: KABC for Base Conditions Combined Data (Urban/Suburban Arterial Segments)78Table 5-25: KAB for Base Conditions Combined Data (Urban/Suburban Arterial Segments)78Table 5-26: KA for Base Conditions Combined Data (Urban/Suburban Arterial Segments)78Table 5-26: KA for Base Conditions Combined Data (Urban/Suburban Arterial Segments)78Table 5-26: KA for Base Conditions Combined Data (Urban/Suburban Arterial Segments)78Table 5-26: KA for Base Conditions Combined Data (Urban/Suburban Arterial Segments)78Table 5-26: KA for Base Conditions Combined Data (Urban/Suburban Arterial Segments)78Table 5-26: KA for Base Conditions Combined Data (Urban/Suburban Arterial Segments)78Table 5-26: KA for Base Conditions Combined Data (Urban/Suburban Arterial Segments)79
Table 5-18: Validation of Initial 2U Base Condition Models76Table 5-19: Validation of 3T Base Condition Models76Table 5-20: Validation of 4D Base Condition Models76Table 5-21: Validation of 4U Base Condition Models77Table 5-22: Range of Base Model Variables for Final Urban/Suburban Segment Models77Table 5-23: Total for Base Conditions Combined Data (Urban/Suburban Arterial Segments)78Table 5-24: KABC for Base Conditions Combined Data (Urban/Suburban Arterial Segments)78Table 5-25: KAB for Base Conditions Combined Data (Urban/Suburban Arterial Segments)78Table 5-26: KA for Base Conditions Combined Data (Urban/Suburban Arterial Segments)78Table 5-26: KA for Base Conditions Combined Data (Urban/Suburban Arterial Segments)79Table 5-27: MVN for Base Conditions Combined Data (Urban/Suburban Arterial Segments)79Table 5-27: MVN for Base Conditions Combined Data (Urban/Suburban Arterial Segments)79Table 5-27: MVN for Base Conditions Combined Data (Urban/Suburban Arterial Segments)79
Table 5-18: Validation of Initial 2U Base Condition Models76Table 5-19: Validation of 3T Base Condition Models76Table 5-20: Validation of 4D Base Condition Models76Table 5-21: Validation of 4U Base Condition Models77Table 5-22: Range of Base Model Variables for Final Urban/Suburban Segment Models77Table 5-23: Total for Base Conditions Combined Data (Urban/Suburban Arterial Segments)78Table 5-24: KABC for Base Conditions Combined Data (Urban/Suburban Arterial Segments)78Table 5-25: KAB for Base Conditions Combined Data (Urban/Suburban Arterial Segments)78Table 5-26: KA for Base Conditions Combined Data (Urban/Suburban Arterial Segments)79Table 5-26: KA for Base Conditions Combined Data (Urban/Suburban Arterial Segments)79Table 5-26: KA for Base Conditions Combined Data (Urban/Suburban Arterial Segments)79Table 5-26: KA for Base Conditions Combined Data (Urban/Suburban Arterial Segments)79Table 5-27: MVN for Base Conditions Combined Data (Urban/Suburban Arterial Segments)79Table 5-28: RE for Base Conditions Combined Data (Urban/Suburban Arterial Segments)79Table 5-28: RE for Base Conditions Combined Data (Urban/Suburban Arterial Segments)79
Table 5-18: Validation of Initial 2U Base Condition Models76Table 5-19: Validation of 3T Base Condition Models76Table 5-20: Validation of 4D Base Condition Models76Table 5-21: Validation of 4U Base Condition Models76Table 5-21: Validation of 4U Base Condition Models77Table 5-22: Range of Base Model Variables for Final Urban/Suburban Segment Models77Table 5-23: Total for Base Conditions Combined Data (Urban/Suburban Arterial Segments)78Table 5-24: KABC for Base Conditions Combined Data (Urban/Suburban Arterial Segments)78Table 5-25: KAB for Base Conditions Combined Data (Urban/Suburban Arterial Segments)78Table 5-26: KA for Base Conditions Combined Data (Urban/Suburban Arterial Segments)79Table 5-27: MVN for Base Conditions Combined Data (Urban/Suburban Arterial Segments)79Table 5-28: RE for Base Conditions Combined Data (Urban/Suburban Arterial Segments)79Table 5-28: SSD for Base Conditions Combined Data (Urban/Suburban Arterial Segments)79Table 5-29: SSD for Base Conditions Combined Data (Urban/Suburban Arterial Segments)79Table 5-29: SSD for Base Conditions Combined Data (Urban/Suburban Arterial Segments)79Table 5-29: SSD for Base Conditions Combined Data (Urban/Suburban Arterial Segments)79Table 5-29: SSD for Base Conditions Combined Data (Urban/Suburban Arterial Segments)79
Table 5-18: Validation of Initial 2U Base Condition Models76Table 5-19: Validation of 3T Base Condition Models76Table 5-20: Validation of 4D Base Condition Models76Table 5-21: Validation of 4U Base Condition Models77Table 5-22: Range of Base Model Variables for Final Urban/Suburban Segment Models77Table 5-23: Total for Base Conditions Combined Data (Urban/Suburban Arterial Segments)78Table 5-24: KABC for Base Conditions Combined Data (Urban/Suburban Arterial Segments)78Table 5-25: KAB for Base Conditions Combined Data (Urban/Suburban Arterial Segments)78Table 5-26: KA for Base Conditions Combined Data (Urban/Suburban Arterial Segments)79Table 5-27: MVN for Base Conditions Combined Data (Urban/Suburban Arterial Segments)79Table 5-28: RE for Base Conditions Combined Data (Urban/Suburban Arterial Segments)79Table 5-29: SSD for Base Conditions Combined Data (Urban/Suburban Arterial Segments)79Table 5-29: SSD for Base Conditions Combined Data (Urban/Suburban Arterial Segments)79Table 5-29: SSD for Base Conditions Combined Data (Urban/Suburban Arterial Segments)80Table 5-30: SOD+HO for Base Conditions Combined Data (Urban/Suburban Arterial Segments)80
Table 5-18: Validation of Initial 2U Base Condition Models76Table 5-19: Validation of 3T Base Condition Models76Table 5-20: Validation of 4D Base Condition Models76Table 5-21: Validation of 4U Base Condition Models77Table 5-22: Range of Base Model Variables for Final Urban/Suburban Segment Models77Table 5-23: Total for Base Conditions Combined Data (Urban/Suburban Arterial Segments)78Table 5-24: KABC for Base Conditions Combined Data (Urban/Suburban Arterial Segments)78Table 5-25: KAB for Base Conditions Combined Data (Urban/Suburban Arterial Segments)78Table 5-26: KA for Base Conditions Combined Data (Urban/Suburban Arterial Segments)79Table 5-27: MVN for Base Conditions Combined Data (Urban/Suburban Arterial Segments)79Table 5-28: RE for Base Conditions Combined Data (Urban/Suburban Arterial Segments)79Table 5-29: SSD for Base Conditions Combined Data (Urban/Suburban Arterial Segments)79Table 5-29: SSD for Base Conditions Combined Data (Urban/Suburban Arterial Segments)79Table 5-29: SSD for Base Conditions Combined Data (Urban/Suburban Arterial Segments)80Table 5-30: SOD+HO for Base Conditions Combined Data (Urban/Suburban Arterial Segments)80Table 5-31: MVN OTHER for Base Conditions Combined Data (Urban/Suburban Arterial Segments)80Table 5-31: MVN OTHER for Base Conditions Combined Data (Urban/Suburban Arterial Segments)80Table 5-31: MVN OTHER for Base Conditions Combined Data (Urban/Suburban Arterial Segments)80
Table 5-18: Validation of Initial 2U Base Condition Models76Table 5-19: Validation of 3T Base Condition Models76Table 5-19: Validation of 4D Base Condition Models76Table 5-20: Validation of 4U Base Condition Models76Table 5-21: Validation of 4U Base Condition Models77Table 5-22: Range of Base Model Variables for Final Urban/Suburban Segment Models77Table 5-23: Total for Base Conditions Combined Data (Urban/Suburban Arterial Segments)78Table 5-24: KABC for Base Conditions Combined Data (Urban/Suburban Arterial Segments)78Table 5-25: KAB for Base Conditions Combined Data (Urban/Suburban Arterial Segments)78Table 5-26: KA for Base Conditions Combined Data (Urban/Suburban Arterial Segments)79Table 5-27: MVN for Base Conditions Combined Data (Urban/Suburban Arterial Segments)79Table 5-28: RE for Base Conditions Combined Data (Urban/Suburban Arterial Segments)79Table 5-29: SSD for Base Conditions Combined Data (Urban/Suburban Arterial Segments)79Table 5-29: SSD for Base Conditions Combined Data (Urban/Suburban Arterial Segments)79Table 5-29: SSD for Base Conditions Combined Data (Urban/Suburban Arterial Segments)80Table 5-30: SOD+HO for Base Conditions Combined Data (Urban/Suburban Arterial Segments)80Table 5-31: MVN OTHER for Base Conditions Combined Data (Urban/Suburban Arterial Segments)81Table 5-32: SV for Base Conditions Combined Data (Urban/Suburban Arterial Segments)81Table 5-32: SV for Base Conditions Combined Data (Urban/Suburban Arterial Segments)81Table 5-32: SV for Base Conditions Combi
Table 5-18: Validation of Initial 2U Base Condition Models76Table 5-19: Validation of 3T Base Condition Models76Table 5-19: Validation of 4D Base Condition Models76Table 5-20: Validation of 4U Base Condition Models76Table 5-21: Validation of 4U Base Condition Models77Table 5-22: Range of Base Model Variables for Final Urban/Suburban Segment Models77Table 5-23: Total for Base Conditions Combined Data (Urban/Suburban Arterial Segments)78Table 5-24: KABC for Base Conditions Combined Data (Urban/Suburban Arterial Segments)78Table 5-25: KAB for Base Conditions Combined Data (Urban/Suburban Arterial Segments)78Table 5-26: KA for Base Conditions Combined Data (Urban/Suburban Arterial Segments)79Table 5-27: MVN for Base Conditions Combined Data (Urban/Suburban Arterial Segments)79Table 5-28: RE for Base Conditions Combined Data (Urban/Suburban Arterial Segments)79Table 5-29: SSD for Base Conditions Combined Data (Urban/Suburban Arterial Segments)79Table 5-30: SOD+HO for Base Conditions Combined Data (Urban/Suburban Arterial Segments)80Table 5-31: MVN OTHER for Base Conditions Combined Data (Urban/Suburban Arterial Segments)80Table 5-32: SV for Base Conditions Combined Data (Urban/Suburban Arterial Segments)81Table 5-32: SV for Base Conditions Combined Data (Urban/Suburban Arterial Segments)81Table 5-31: MVN OTHER for Base Conditions Combined Data (Urban/Suburban Arterial Segments)81Table 5-32: SV for Base Conditions Combined Data (Urban/Suburban Arterial Segments)81Table 5-33: Nighttime for Base Cond
Table 5-18: Validation of Initial 2U Base Condition Models76Table 5-19: Validation of 3T Base Condition Models76Table 5-19: Validation of 4D Base Condition Models76Table 5-20: Validation of 4U Base Condition Models76Table 5-21: Validation of 4U Base Condition Models77Table 5-22: Range of Base Model Variables for Final Urban/Suburban Segment Models77Table 5-23: Total for Base Conditions Combined Data (Urban/Suburban Arterial Segments)78Table 5-24: KABC for Base Conditions Combined Data (Urban/Suburban Arterial Segments)78Table 5-25: KAB for Base Conditions Combined Data (Urban/Suburban Arterial Segments)78Table 5-26: KA for Base Conditions Combined Data (Urban/Suburban Arterial Segments)79Table 5-27: MVN for Base Conditions Combined Data (Urban/Suburban Arterial Segments)79Table 5-28: RE for Base Conditions Combined Data (Urban/Suburban Arterial Segments)79Table 5-29: SSD for Base Conditions Combined Data (Urban/Suburban Arterial Segments)79Table 5-30: SOD+HO for Base Conditions Combined Data (Urban/Suburban Arterial Segments)80Table 5-31: MVN OTHER for Base Conditions Combined Data (Urban/Suburban Arterial Segments)81Table 5-32: SV for Base Conditions Combined Data (Urban/Suburban Arterial Segments)81Table 5-33: Nighttime for Base Conditions Combined Data (Urban/Suburban Arterial Segments)81Table 5-34: MVD for Base Conditions Combined Data (Urban/Suburban Arterial Segments)82Table 5-34: MVD for Base Conditions Combined Data (Urban/Suburban Arterial Segments)82Table 5-34: MVD for Base Conditio
Table 5-18: Validation of Initial 2U Base Condition Models76Table 5-19: Validation of 3T Base Condition Models76Table 5-20: Validation of 4D Base Condition Models76Table 5-21: Validation of 4U Base Condition Models76Table 5-22: Range of Base Model Variables for Final Urban/Suburban Segment Models77Table 5-22: Range of Base Conditions Combined Data (Urban/Suburban Arterial Segments)78Table 5-23: Total for Base Conditions Combined Data (Urban/Suburban Arterial Segments)78Table 5-24: KABC for Base Conditions Combined Data (Urban/Suburban Arterial Segments)78Table 5-25: KAB for Base Conditions Combined Data (Urban/Suburban Arterial Segments)78Table 5-26: KA for Base Conditions Combined Data (Urban/Suburban Arterial Segments)79Table 5-27: MVN for Base Conditions Combined Data (Urban/Suburban Arterial Segments)79Table 5-28: RE for Base Conditions Combined Data (Urban/Suburban Arterial Segments)79Table 5-29: SSD for Base Conditions Combined Data (Urban/Suburban Arterial Segments)80Table 5-30: SOD+HO for Base Conditions Combined Data (Urban/Suburban Arterial Segments)80Table 5-31: MVN OTHER for Base Conditions Combined Data (Urban/Suburban Arterial Segments)81Table 5-32: SV for Base Conditions Combined Data (Urban/Suburban Arterial Segments)81Table 5-33: Nighttime for Base Conditions Combined Data (Urban/Suburban Arterial Segments)81Table 5-33: Nighttime for Base Conditions Combined Data (Urban/Suburban Arterial Segments)82Table 5-34: MVD for Base Conditions Combined Data (Urban/Suburban Arterial Segments)82

Table 5-37: Descriptive statistics for base condition SPFs (3ST: 2082 intersections)	87
Table 5-38: Descriptive statistics for base condition SPFs (4SG: 589 intersections)	88
Table 5-39: Descriptive statistics for base condition SPFs (4ST: 551 intersections)	89
Table 5-40: Prediction Models for 3SG Intersections	91
Table 5-41: Prediction models for 3ST intersections	92
Table 5-42: Prediction models for 4SG intersections	93
Table 5-43: Prediction models for 4ST crashes	94
Table 5-44: Summary of Calibration/Validation data set from North Carolina for 3SG intersections (33	5
intersections; 2010 to 2015)	95
Table 5-45: Summary of Calibration/Validation data from North Carolina for 3ST intersections (52	
intersections: 2010 to 2015 data)	96
Table 5-46: Summary of Calibration/Validation data from North Carolina for 4SG intersections (102	
intersections: 2010 to 2015)	96
Table 5-47: Summary of the Calibration/Validation data from North Carolina for 4ST intersections (55	•
intersections: 2010 to 2015 data)	96
Table 5-48: Calibration/Validation Results for 3SG intersections	98
Table 5-49: Calibration/Validation results for 3ST intersections	99
Table 5-50: Calibration/Validation results for 4SG intersections	100
Table 5-51: Calibration/Validation Results for 4ST Intersections	101
Table 6-1: Results for Urban Four Lane Divided Segments	106
Table 6-2: Results for Urban Two Lane Undivided Segments	106
Table 6-3: Results for Rural Two Lane 3 Leg Stop-controlled Intersections	107
Table 6-4: Calibration results using Texas 2012 data for calibration of SPFs using Texas 2009-2011 dat	a
for undivided highway segments	107
Table 6-5: Calibration results using Ohio, Washington, and Illinois data for calibration of California SP	Fs
for divided highway segments.	107
Table 7-1: Data Sources (States) for SPF Estimation and Validation, by Facility Type	111

LIST OF FIGURES

Figure 2-1: General Taxonomy of Crash Types	4
Figure 6-1: Suggested Calibration Process	. 110
Figure 7-1: Crash Types Estimated for Segments on Two-Lane Rural Highways	. 112
Figure 7-2: Specific Crash Types Included in the Estimated Crash Types (Rural 2U)	. 113
Figure 7-3: Crash Types Estimated for Intersections on Two-Lane Rural Highways	. 113
Figure 7-4: Specific Crash Types included in the Estimated Crash Types (Rural 3ST, 4ST and 4SG)	. 114
Figure 7-5: Crash Types Estimated for Divided and Undivided Segments on Multilane Rural Highways	115
Figure 7-6: Crash Type and Severity SPFs that Were Not Estimated for Urban/Suburban Intersections	117

LIST OF ABBREVIATIONS

Crash types

ANG	Right angle	OD	Opposite direction (all severity
ANIMAL	Animal related		levels)
BIKE	Bicycle–vehicle	PED	Pedestrian-vehicle
FO	Fixed object	RE	Rear end
НО	Head-on	RO	Overturn or roll over
HO+SOD	Head-on plus sideswipe	ROR	Single-vehicle run-off-road
	opposite direction	SD	Same direction (all severity
ID	Intersecting direction (all		levels)
	severity levels)	SOD	Sideswipe opposite direction
LEFT	Left turn	SSD	Sideswipe same direction
MO	Moving object	SV	Single vehicle (all severity
MV	Multiple vehicle (all severity		levels)
	levels)	SV FIXEDOBJ	Single-vehicle fixed object
MVD	Multiple-vehicle driveway related	SV OTHER	Single-vehicle other
		SV OTHEROBJ	Single-vehicle other object
MVN	Multiple-vehicle non-driveway related	TID	Turning intersecting direction
MVN OTHER	(MVN minus RE, HO, SSD and SOD)	TOD	Turning opposite direction
		ТОТ	Total
MVO	Multiple-vehicle other	TSD	Turning same direction
NIGHT	Nighttime		

Severity levels

К	Fatal injury
A	Incapacitating injury
В	Non-incapacitating injury
C	Possible injury
0	No injury or property damage only

Copyright National Academy of Sciences. All rights reserved.

Facility types

2U	Two-lane undivided	4
3SG	Three-leg signal-controlled	Z

- 3ST Three-leg stop-controlled
- 3T Two-lane plus two-way left-turn lane
- 4D Four-lane divided

- 4SG Four-leg signal-controlled
- 4ST Four-leg stop-controlled
- 4U Four-lane undivided
- 5T Four-lane plus two-way left-turn lane

Variables (with definitions)

AADT	Average annual daily traffic
AADT _{maj}	AADT on the major road (higher volume)
AADT _{min}	AADT on the minor road (lower volume)
AADT _{tot}	AADT (vehicles per day) for minor and major-road combined approaches
Automated Enforcement	Indicates if automated speed enforcement is present
DWYDENS	Number of driveways per mile
FODensity	Fixed object density per mile
Length	Segment length in miles
Lighting	Indicates if lighting is present or not
MajComm	Number of major commercial driveways
MajInd	Number of major industrial driveways
MajRes	Number of major residential driveways
MinComm	Number of minor commercial driveways
MinInd	Number of minor industrial driveways
MinRes	Number of minor residential driveways
MedWidth	Median width in feet
OffsetFO	Average distance from traveled way to fixed objects in feet
OtherDwy	Number of driveways of other type
Parking	Indicates presence of on-street parking

ParkingProp	Proportion of curb length with on-street parking
Parking Type	Indicates angled or parallel on-street parking
Speed Limit	Posted speed limit in miles per hour

Other Abbreviations

AASHTO	American Association of State Highway and Transportation Officials
AIC	Akaike's Information Criterion
BIC	Bayesian Information Criterion
CMF	Crash modification factor
DOT	Department of Transportation
FHWA	Federal Highway Administration
GLM	Generalized linear model
GOF	Goodness of fit
HSIS	Highway Safety Information System
HSM	Highway Safety Manual
MAD	Mean absolute deviation
MSPE	Mean squared prediction error
NB	Negative binomial
ОН	Ohio
SPF	Safety performance function

SUMMARY

This report describes efforts to develop improved crash prediction methods for crash type and severity for the three facility types covered in the 2010 Highway Safety Manual (HSM)—specifically, two-lane rural highways, multilane rural highways, and urban/suburban arterials. For each, models were estimated for undivided and divided (multilane rural and urban/suburban only) segments and three- and four-leg stopcontrolled intersections and four-leg signal-controlled intersections (also three-leg signal-controlled intersections for urban/suburban arterials). The models use data for segments and intersections with "base conditions" that are defined specifically for each facility type. Only the observations that satisfy the defined base conditions were used for estimating these models. For urban/suburban arterial segments, because no sites met all base conditions for roadside fixed objects and median width, these variables were included in the models only if considered appropriate for that crash type and if the variable was statistically significant in the model and with the expected direction of effect. For some crash types, the number of driveways was also directly included in the models where warranted. These base condition models provide predictions that can be adjusted for actual conditions at a place of prediction, such as lane and shoulder width, the presence of lighting, and other pertinent factors. Content describing these models and instructions for applying them has been prepared for inclusion in the second edition of the HSM. A revisit of the HSM's procedure for calibrating prediction models for transfer to other jurisdictions is also described and recommendations for updating that procedure offered. Average condition models were also estimated using all available valid data points available from the state data used for each facility type; these are provided in an appendix.

For most facility types, crash count models are estimated to predict four aggregated crash types: samedirection, intersecting-direction, opposite-direction, and single-vehicle crashes. For urban/suburban arterial segments, crash count models are estimated for more disaggregated types—for example, rear end, sideswipe-same-direction, combined head-on and opposite-direction sideswipe crashes and night crashes. Models for predicting total crashes were also estimated for all facility types. The count of total crashes may not be equal to the sum of the individual crash type counts because in a few cases there may have been missing variables that would have prevented a crash from being identified as a particular type of crash, but it was still included in total crashes. If a total crash prediction is required, the total crash model should be used rather than adding together all of the crash type models.

For all facility types except urban/suburban arterial segments, crash severity count models are also estimated for each aggregated crash type and for total crashes. For urban/suburban arterial segments, they are estimated for total crashes only. These models are estimated cumulatively—that is, for the following levels:

- Crashes resulting in fatal and incapacitating injuries (KA)
- Crashes resulting in fatal, incapacitating, and non-incapacitating injuries (KAB)
- Crashes resulting in fatal, incapacitating, non-incapacitating, and possible injuries (KABC)
- All severity levels (KABCO)

The sample of fatal injury crashes (K) was too small for all facility types to estimate meaningful models. Average proportions must be computed using local jurisdiction data to allocate KA crashes between K and A if a K crash predictive model is needed, provided the count of these crashes is large enough to estimate a proportion reliably. If a count for a specific crash type and level of severity is required, for example single-vehicle B crashes, the prediction for single-vehicle KA crashes can be subtracted from the prediction for single-vehicle KAB crashes to get a prediction for single-vehicle B crashes.

Also revisited was the procedure for calibrating HSM prediction models for application in jurisdictions other than the locations providing the data used to estimate the safety performance functions (SPFs). The current HSM method was compared with methods proposed by other researchers by calibrating the newly estimated models with data from other jurisdictions. This comparison included evaluating the association between calibration accuracy and calibration sample size, using both a constant calibration factor and an estimated calibration function that relates the factor to the model prediction. The findings suggest the procedure provided by the HSM is still reasonable, although the calibration function yields better accuracy than the constant factor, and sample sizes required for a reliable calibration are sometimes larger than the minimum recommended and can only be iteratively determined. The calibration function could not be estimated with very small sample sizes.

It is noted that estimation and application of crash prediction models is dependent upon having datasets of sufficient size and quality. It was not possible to estimate models for K only crashes for any crash types or in total for any facility type due to the small number of these crashes in any of the data sets. For some crash types, such as same direction crashes, KA crash models also could not be estimated. It is also noted that many of the roadway characteristic variables that are necessary for estimating and applying these models, for example numbers of driveways of different types and intersection skew angles, are not routinely archived by all transportation agencies. For estimation and validation of these models it was necessary to engage in data collection efforts to augment data provided by the transportation agencies that were used in the project. In order to use these prediction procedures, most agencies will likely need to augment their own data archives with additional roadway characteristics.

Appendices to the report provide the following:

- 1. Documentation of additional models that were estimated—specifically, for average crash models that were estimated using all available data, not just those that met the base conditions
- 2. Documentation of exploration of a probabilistic approach to predicting crash severity that is not being recommended for prediction
- 3. Content that has been prepared for inclusion in the second edition of the HSM

1 BACKGROUND

1.1 PROJECT BACKGROUND

The release of the Highway Safety Manual (HSM) by the American Association of State Highway and Transportation Officials (AASHTO) in 2010 was a landmark event in the practice of road safety analysis. Before it, the United States had no central repository for information about quantitative road safety analysis methodology. Consequently, road safety analysts would use methods they were already familiar with or that were easy to locate, which were not necessarily the most appropriate for the analysis context, let alone reflective of the most current knowledge. The HSM provides a single source for methodology and guidance for answering questions about road safety for road segments, intersections, and projects. Numerous state and local road authorities apply HSM methods through the AASHTO lead state initiative.

As revolutionary as it has been for the practice of road safety analysis, it is understood that the 2010 HSM is only a first edition, and room for improvement remains. The various predictive method chapters, for example, offer different approaches for predicting crashes by collision type and severity. Most of these apply aggregate proportions to predictions of total crashes, without accounting for the possibility that the proportion of crashes by type or severity level might be associated with a mixture of predictor variables observed at the location—in particular, traffic volume. Resolving this issue is the basis for this project.

Accurately predicting crashes by collision type and severity is important for the following reasons:

- 1. Many crash modification factors (CMFs) in the HSM apply only to certain collision types or crashes at certain severity levels. Their proper application requires accurate prediction of the number of crashes of the corresponding collision type and severity level.
- 2. The safety management methodology in Part B, Chapter 7 of the HSM includes economic evaluation of the expected crash outcomes of road improvement scenarios. These evaluations apply CMFs to improve estimates of crashes without the improvement obtained by applying standardized proportions of different crash types and severity levels to the predicted total crash count by type and severity level. Fully accounting for all of the factors associated with crash type and severity will result in better prediction of these counts and, thus, more accurate economic evaluations and more efficient allocation of scarce safety improvement resources.
- 3. Collision type and crash severity are usually associated with one another (Golob et al. 1987; Chang and Mannering 1999; Kockelman and Kweon 2002; Zhang *et al.* 2007). Predicting them individually potentially ignores strong associations, leading to less accurate predictions.

1.2 PROJECT OBJECTIVES

The objectives of the project (as defined in the scope of work) are to produce the following:

1. Crash severity and crash type safety performance functions (SPFs) or distributions or both that can be used in the estimation of the types and severity of crashes likely on the facility types contained or intended for use in the HSM:

We present in this report SPFs for crash type and severity.

2. Recommendations for how the research results can be incorporated into the HSM and associated tools, including the development of associated chapters or chapter content in AASHTO standard format for the HSM second edition, and recommended procedures for consistent use of crash severity and crash type SPFs or distributions or both:

Recommendations are provided in the conclusions; draft content for the HSM is provided in Appendix C.

3. A description of the statistical and practical advantages and disadvantages of the methodology developed in the research and potential barriers to implementation:

The description is provided in this report.

The remainder of the report is organized as follows:

- Section 2 provides an overview of our modeling approach common to all facility types.
- Section 3 provides the results of the work on two-lane rural highways.
- Section 43.2.2 provides the results of the work on multilane rural highways.
- Section 5 provides the results of the work on urban and suburban arterials.
- Section 6 provides the results of the work on calibration and validation of all models.
- Section 7 provides conclusions and recommendations about how to incorporate the report findings into the HSM.

2 ANALYSIS APPROACHES

2.1 SCOPE OF REPORT

We report here two types of crash frequency models by crash type and crash severity.

Base condition models are estimated using only sites that meet the "base condition" and include only traffic volume as an explanatory variable; these models support the HSM Part C predictive methodology.

Average condition models are estimated using all sites and contain exposure-related variables, such as average annual daily traffic (AADT) and driveways; they apply for average conditions of non-exposure variables.

For most facility types, we report **base condition models** to keep these models compatible with the methodology of the current HSM. For a few facility types, we needed to relax some of the base condition definitions to achieve a large enough sample size to estimate significant models. For a few facility types, the total sample size was much smaller, so we had to use all cases to estimate significant models; we report **average condition models** for these facility types, as well as for the rest of the facility types in Appendix A.

This report does not contain probabilistic crash severity models or models that include both exposure and non-exposure covariates. As will be discussed later, our efforts to estimate these types of models were unsuccessful. This section of the report documents our crash type definitions, our estimation approach for crash count models, our exploration of probabilistic crash severity models, and our exploration of improvements for the model calibration procedure.

2.2 CRASH TYPE DEFINITIONS

2.2.1 Crash Types

The selection of crash types for which models would be developed was based on several criteria:

- 1. The crash types included in the current HSM chapters for which proportions of total crashes are provided
- 2. The crash types identifiable from electronic crash records in the datasets used for the project
- 3. The crash types represented in the estimation and validation datasets
- 4. The crash types to which available CMFs in the HSM apply for each site type

While we tried to maintain consistency of the crash types estimated among all facility types, consideration of these criteria did result in some differences in the final array of crash type models from one facility type to another.

Note that models for pedestrian and bicycle crashes have not been estimated due to very small sample sizes in the available data. These crash types may still be analyzed using the existing HSM approach.

Note also that animal collisions are not included in any of the crash types (they are most likely to be identified as single-vehicle crashes). Our rationale for the omission is that animal crashes have more to do with environmental factors than road characteristics. Since the HSM predictive methods are focused more on providing guidance for selecting safety treatments or predicting expected crash counts related to road

characteristics, it is not clear how models predicting animal collisions would fit into the model framework. We note the existence of a large body of research into animal–vehicle collisions and suggest that body of work be consulted for consideration of this collision type in safety management procedures.

We have defined the crash types shown in Figure 2-1 to estimate models:

Figure 2-1: General Taxonomy of Crash Types

The taxonomy shown in Figure 2-1 provides for several levels of disaggregation of the crash types according to the number of vehicles involved, their direction of travel, and the manner of the collision. The justification for creating these categories is as follows:

- Each crash type within each category involves vehicles colliding in the same way—that is, front to front, front to rear, front to side, and so on. This results in similar crash severity profiles, as confirmed by Zhang et al. (2007).
- Each crash type within each category is associated with a similar distribution of contributing factors, as assigned by investigating officers (Zhang et al. 2007). This suggests common covariates and exposure functions for these associated collision types.
- Single-vehicle and opposite-direction crashes have very different relationships with exposure (Ivan 2004), so while their collision patterns and contributing factors are similar, they could have very different model forms.
- Experience with crash type prediction suggests that splitting the crash count into too many categories cripples the estimation process, as the crash count for each type gets smaller and smaller. The aggregation categories defined here permit finding a balance that maximizes differences in crash severity and likely causal factors between groups and minimizes them within groups.

The data did not support successful estimation of models for all of these crash types for each facility type, such that coefficients on the AADT variables were not significant or received negative coefficients, there were insufficient numbers of observed crashes or the models did not converge. Also, for the urban/suburban segment models, multiple-vehicle crashes were classified as "driveway related" (MVD) and "multiple-vehicle non-driveway other" (MVN). In these cases, MVD included the following subtypes:

turning same direction (TSD), all intersecting direction (ID) types, and turning opposite direction (TOD). MVN included rear end (RE), head-on (HO), sideswipe same direction (SSD), sideswipe opposite direction (SOD), and MVN other (that is, crashes coded as parked vehicle or angle, though not at driveways or intersections). In addition to the above taxonomy, we estimated nighttime crashes (Night) for some facility types (Urban/suburban segments). Table 2-1 lists the base condition crash type models that were estimated for each facility type.

Facility	MVD	MVN	MVN	SD	RF	SSD	п	0D	но	HO +	sv	NIGHT
Туре			OTHER	50		330				SOD	30	NIGHT
Two-lane ru	Two-lane rural											
2U				Х				Х			Х	
3ST				Х			Х	Х			Х	
4ST				Х			Х	Х			Х	
4SG				Х			Х	Х			Х	
Multilane r	ural											
4U				Х			Х	Х			Х	
4D				Х			Х	Х			Х	
3ST				Х			Х	Х			Х	
4ST				Х			Х	Х			Х	
4SG				Х			Х	Х			Х	
Urban/Sub	urban art	erials										
2U	Х	Х	Х		Х	Х				Х		Х
3T	Х	Х	Х		Х	Х				Х	Х	Х
4U	Х	Х	Х		Х	Х				Х	Х	Х
4D	Х	Х	Х		Х	Х				Х	Х	Х
5T	Х	Х	Х		Х	Х				Х	Х	Х
3ST				Х			Х	Х			Х	
4ST				Х			Х	Х			Х	
3SG				Х			Х	Х			Х	
4SG				Х			Х	Х			Х	

Table 2-1: Base Condition Crash Type Models Estimated for Each Facility Type

Notes: *Facility type codes*—2U = two-lane undivided segments; 3T = two-lane segments with two-way left-turn lane; 4U = four-lane undivided segments; 4D = four-lane divided segments; 5T = four-lane segments with two-way left-turn lane; 3ST = 3 leg stop-controlled intersections; 4ST = four-leg stop-controlled intersections; 3SG = three-leg signal-controlled intersections; 4SG = four-leg signal-controlled intersections.

Crash type codes—MVD = multiple-vehicle driveway related; MVN = multiple-vehicle non-driveway related; MVN OTHER = multiple-vehicle other; SD = same direction (all severity levels); RE = rear end; SSD = sideswipe same direction; ID = intersecting direction; OD = opposite direction (all severity levels); HO = head-on; HO+SOD = sideswipe + opposite direction; SV = single vehicle (all severity levels); NIGHT = nighttime.

2.2.2 Delineation of Intersection Versus Segment Crashes

In the HSM methodology, roadway segment models are used to predict all crashes that occur on portions of roadway segments that are more than 250 feet from an intersection and non-intersection-related crashes that occur on portions of roadway segments that are within 250 feet of an intersection. Intersection models are used to predict all intersection and intersection-related crashes that occur within 250 feet of the intersection. The models for two-lane rural roads and for urban and suburban and suburban arterials apparently were developed to facilitate this application directly.

For multilane rural roads in states where the crash records do not indicate "intersection" or "intersectionrelated," all crashes occurring within 250 feet of the middle of an intersection are assigned to that intersection. The calibration procedure is expected to allow models developed for such cases to be applied to cases specified in the HSM methodology, and vice versa.

These models were developed to be as consistent with the HSM methodology as possible. In the Ohio database used for urban and suburban arterials and the California database used for multilane rural roads, however, crashes cannot reliably be identified as intersection or intersection-related. Thus, the intersection models being developed for those two databases and facility types will pertain to *all* crashes occurring within 250 feet of the center of an intersection, and the segment models will apply to crashes occurring outside this boundary. As noted previously, the calibration procedure will allow these models to apply to cases where intersection and intersection-related crashes can be identified in accordance with the HSM methodology.

2.3 MODEL ESTIMATION APPROACH

2.3.1 Crash Count Models

Because crash frequency is a count phenomenon, negative binomial (NB) regression models, or other count distribution estimation methods, are commonly used to build crash prediction models. Even though the NB model has some limitations (for example, it cannot overcome potential underdispersion problems, and the dispersion parameter may be biased for small sample sizes), this model is still the one most commonly used in univariate crash frequency data analysis. The NB model also provides the dispersion parameter that is required for the empirical Bayes weighting of model predictions and observed crashes in the HSM. In this research, the NB model has been applied for all count models developed.

The NB model, also called the Poisson-Gamma model, is well known to be able handle the issue of overdispersion in count data, where the variance exceeds the mean in violation of the definition of the Poisson distribution. In the NB model, the mean parameter for each site, *i*, is

$$\lambda_i = f(\beta X_i) \times \exp(\varepsilon_i) \tag{2-1}$$

where ε_i is a gamma-distributed disturbance term, X_i is a vector of explanatory variables, and β is a vector of estimable parameters (coefficients on X_i). The most common relationship between the explanatory variables and λ_i is

$$f(\beta X_i) = \exp(\beta X_i) \text{ or } \ln[f(\beta X_i)] = \beta X_i.$$
(2-2)

With this form, the relationship is also called a log-linear model. One reason the log-linear model is popular for counts is that it ensures the dependent variable (that is, the expected number of crashes

during a certain time period) is always positive or zero. Another reason is that taking the log of both sides of the equation results in a linear combination of the predictor variables (that is, the X's) on the right-hand side. This model form belongs to a category called generalized linear models (GLMs). In a GLM, the regression coefficients and their standard errors are typically estimated by maximizing the likelihood or log likelihood of the parameters for the data observed.

The variance of the NB model can be estimated as

$$VAR[y_i] = E[y_i] + \alpha (E[y_i])^2,$$
(2-3)

where y is the crash frequency data and α is the dispersion parameter.

2.3.2 Alternatives for Model Form

SPFs for roadway segments are formulated as

$$N = exp[b_0 + b_1 \times \ln(AADT) + \ln(L)]$$
(2-4)

where

N = expected average crash frequency per year for a roadway segment;
 AADT = annual average daily traffic (vehicles per day) on a roadway segment;
 L = length of roadway segment (miles); and
 b₀, b₁ = regression coefficients.

The value of the overdispersion parameter associated with N is determined as a function of segment length for two-lane and multilane rural facility segments as follows:

$$k = \frac{1}{\exp[c + \ln(L)]} \tag{2-5}$$

The following function was used for the overdispersion parameter for urban/suburban facility segments (except as noted for individual models):

$$k = e^{\alpha_2} L^{\beta_2} \tag{2-6}$$

For intersections, two alternative functional forms were considered:

$$N = exp[b_0 + b_1 \times \ln(AADT_{maj}) + b_2 \times \ln(AADT_{min})]$$
(2-7)

and

$$N = exp[b_0 + b_3 \times \ln(AADT_{total})], \tag{2-8}$$

where

N = base total expected average crash frequency per year for an intersection; $AADT_{maj}$ = AADT (vehicles per day) for major-road approaches; $AADT_{min}$ = AADT (vehicles per day) for minor-road approaches; $AADT_{total}$ = AADT (vehicles per day) for minor- and major-road approaches combined; and b_0 , b_1 , b_2 , b_3 = regression coefficients.

In this research, only AADT_{maj}, AADT_{min} or AADT_{total} were used for exposure for the SPFs, to be consistent with the HSM. Nevertheless, it is possible that different combinations of exposure variables can better

explain the number of crashes (Wang et al. 2017). For some facility types, other model forms were used; this is explained in detail in the relevant sections below.

2.3.3 Model Estimation and Fit Statistics

SPFs for all facility types and crash categories were estimated using standard statistical packages, such as SAS[®]. As indicated above, the negative binomial distribution was used to start. When the negative binomial overdispersion parameter estimated by maximum likelihood (k) is found to be 0, which happened for several intersection models, this indicates a Poisson distribution is more appropriate (IDRE-UCLA, SAS User Guide). We re-estimated the models with a Poisson distribution in those cases and report both models.

In addition to the parameter estimates and standard errors and the overdispersion parameter, the tables also provide the Akaike's Information Criterion (AIC) and the Bayesian Information Criterion (BIC). Both consist of a goodness-of-fit term (log likelihood), along with a penalty to control for overfitting, and this penalty is a function of the number of parameters estimated. With both the AIC and BIC, lower is better. For a discussion of AIC and BIC, readers are referred to Dziak et al. (2012); suffice to say here that BIC provides a larger penalty for the number of parameters. Dziak et al. (2012) indicate that, while the BIC is more likely to lead to a more parsimonious model with some risk of underfitting, the AIC could lead to a model with good future prediction with some risk of overfitting, and the use of AIC versus BIC may depend on the application.

The mean absolute deviation (MAD) gives a measure of the average magnitude of variability of prediction. Smaller values are preferred to larger in comparing two or more competing SPFs. The MAD is the sum of the absolute value of predicted crashes minus observed crashes, divided by the number of sites. The values of predicted and observed crashes are from the calibration data:

$$MAD = \frac{\sum_{i} |\hat{y}_{i} - y_{i}|}{n},$$
(2-9)

where

 y_i = observed counts;

 \hat{y}_{l} = predicted values from the SPF; and

n = validation data sample size.

The mean squared prediction error (MSPE) is the sum of squared differences between observed and predicted crash frequencies, divided by sample size. MSPE is typically used to assess error associated with a validation or external data set:

$$MSPE = \frac{\sum_{i} (\hat{\mathcal{Y}}_{i} - \mathcal{Y}_{i})^{2}}{n},$$
(2-10)

where

 y_i = observed counts;

 \hat{y}_i = predicted values from the SPF; and

n = validation data sample size.

Washington et al. (2005) gives guidelines for interpreting fit statistics and evaluating the suitability of crash prediction models.

2.3.4 Crash Severity Modeling

In general, crashes are classified into five severity levels: fatal injury (K); incapacitating injury (A); nonincapacitating injury (B); possible injury (C); and no injury or property damage only (O). Cumulative values of these levels are commonly defined, building from the highest level, *e.g.*, KA indicates K and A level crashes, KAB indicates K, A and B crashes, etc. For analyzing crash severities, the research team considered several methodologies. First, we considered ordered logit and probit models, using each crash as an observation. These models would have been used to split crash counts into categories of severity. In the preliminary results, some roadway geometric characteristics were found to be statistically significant. They showed that higher maximum speed limits and paved shoulders decrease the severity of a crash, whereas wider lanes increase it, which is clearly counterintuitive. Consequently, we suspected omitted variable bias occurred in the models causing these erroneous results, as they did not include individual or crash characteristics (such as driver, passenger, vehicle, and so on), which are usually found most valuable for predicting the severity of individual crashes.

Consequently, we considered an alternative approach to investigating crashes by severity on an aggregate basis. This better suited the available data as well as the implementation context for the HSM, in which prediction by road segment or intersection is required, and demographic information about travelers is not available. Specifically, we considered a fractional split modeling approach, in which the proportion of crashes by severity level is predicted for each segment or intersection. The methodology and modeling results are excerpted from Yasmin et al. (2016) and summarized in Appendix B. The rest of this section summarizes the fractional split approach and our findings and recommendations regarding crash severity prediction.

Traditionally, the transportation safety literature has evolved along two major streams: crash frequency analysis and crash severity analysis. In crash frequency analysis, the focus is on identifying attributes that result in traffic crashes and effective countermeasures to improve the roadway design, and operational attributes are proposed. Crash severity analysis, on the other hand, is focused on examining crash events, identifying factors that affect the outcome, and providing solutions to reduce the consequences—injuries and fatalities—in the unfortunate event of traffic crashes. Recently, research in transportation safety has begun to bridge the gap between crash frequency and crash severity models. Specifically, researchers are examining crash frequency levels by severity while recognizing that, for the same observation record, crash frequencies by different levels of severity are likely to be dependent. Hence, as opposed to adopting the earlier univariate crash frequency models, researchers have developed multivariate models.

In multivariate approaches that are aimed at studying frequency and severity, the impact of exogenous variables is quantified through the propensity component of count models. The main interaction across different severity-level variables is sought through unobserved effects—that is, no interaction of observed effects occurs across the multiple count models. While this might not be a limitation per se, it might be beneficial to evaluate the impact of exogenous variables in a framework that directly relates a single exogenous variable to all severity count variables simultaneously. It is a framework where the observed propensities of crashes by severity level are modeled directly, while also recognizing the inherent ordering of crash severity outcomes.

The fractional split approach is not without limitations. In field data, there are often no crashes for some specific crash severities in a given case—for example, fatal injury crashes. When this happens, such a segment cannot be used for modeling. To avoid cases with zero crashes for any of the severity levels, the research team aggregated roadway segments into extended super-segments (or arterials). To do this, the severity proportions had to be assumed to be consistent over all segments and intersections included in each super-segment, which was not very practical. In addition, once we aggregated the segments, information specific to them was lost. For these reasons, the research team decided not to adopt the fractional split model for predicting crash severity. Instead, we recommend predicting crash severity using count models, as we do for crash type.

2.4 ESTIMATION AND VALIDATION DATA

Estimating crash prediction models for the HSM requires datasets with adequate size, quality and scope of variables. Very few highway agencies have such data readily available. In order to limit the extent of the project budget expended on data collection, existing data sources were acquired to the extent possible for each facility type. It was also considered to be desirable to use data from the same states as were used to estimate models for the First Edition of the HSM for consistency. Two sources of readily available data were considered:

- The Highway Safety Information System (HSIS). HSIS is a multistate database that contains crash, roadway inventory, and traffic volume data for a select group of states. When HSIS was initially established, participating states were selected based on the quality and quantity of data available, and their ability to merge data from various files. For estimating the prediction models, HSIS data from Washington (two-lane rural segments), Minnesota (two-lane, multilane rural intersections and urban and suburban segments) and California (multilane four-lane divided segments) were used.
- Ohio Department of Transportation (ODOT). Ohio is part of HSIS. However, in addition to the Ohio data that is part of HSIS, Ohio embarked upon a comprehensive project to collect data for implementation of the HSM and graciously provided the data they have assembled.

In order to validate the estimated models it was necessary to have data from at least one more jurisdiction. The above datasets were sufficient for two-lane rural highways, but additional data sources had to be identified and in most cases data elements collected in order to form validation datasets. Table 2-2 lists the source of the data for estimation and validation for segments and intersections for each facility type. The subsequent chapters discuss the datasets in more detail, but a few overall notes about the selection of data are in order at this stage:

- For 4-leg signalized (4SG) intersections on two-lane and multilane rural highways, the Ohio dataset is used for model estimation because it has more cases than the Minnesota dataset. In the First Edition of the HSM, Minnesota data were used to estimate those models. Consequently, the base predictions for these models will be quite different from those made by the First Edition models.
- For four-lane undivided segments on multilane rural highways, only one state (Texas) could provide a useful dataset. Consequently, three years of the data were used for estimation and the fourth year used for validation.

• For four-lane divided segments on multilane rural highways, data from two states are used for validation as all none of the three state databases were as large as would have been preferred, and having two states to validate against helped to better test the resulting models.

Facility Type	Segments	Segments	Intersections	Intersections
	Estimation	Validation	Estimation	Validation
Two-lane rural	Washington	Ohio	3ST: Minnesota	3ST: Ohio
highways			4ST: Minnesota	4ST: Ohio
			4SG: Ohio	4SG: Minnesota
Multilane rural	4U: Texas	4U: Texas (2012)	3ST: Minnesota	3ST: Ohio
highways	(2009-11)	4D: Illinois &	4ST: Minnesota	4ST: Ohio
	4D: California	Washington	4SG: Ohio	4SG: Minnesota
Urban/suburban arterials	Ohio	Minnesota	Ohio	North Carolina

Table 2-2: Data Used for Estimation and Validation

Notes: *Facility type codes*—2U = two-lane undivided segments; 3T = two-lane segments with two-way left-turn lane; 4U = four-lane undivided segments; 4D = four-lane divided segments; 5T = four-lane segments with two-way left-turn lane; 3ST = 3 leg stop-controlled intersections; 4ST = four-leg stop-controlled intersections; 3SG = three-leg signal-controlled intersections; 4SG = four-leg signal-controlled intersections.

3 MODELS FOR TWO-LANE RURAL HIGHWAYS

3.1 ROADWAY SEGMENTS

3.1.1 Estimation and Validation Data

To predict crash frequency and severity on two-lane rural highways, the research team estimated and validated base condition SPFs for undivided roadway segments. To develop SPFs for undivided segments (2U), we used segment crash and road characteristics data from Washington State (2008–12). To validate 2U SPFs, we used the same kind of data from Ohio (2009–11).

As shown in Table 3-1, some of the variables defining base conditions in the current HSM are not available in the Washington data: driveway density, vertical curvature, lighting, and use of automated speed enforcement. Knowledge of the roads of this facility type in Washington suggests we can safely assume lighting and automated speed enforcement are absent from nearly all of the segments in the database. A total of 361 2U segments meet the HSM base conditions (other than the four missing variables). We used these to estimate base condition models. Table 3-2 and Table 3-3, respectively, present descriptive statistics for the base conditions SPFs and their validation datasets. For validating 2U SPFs, only 21 segments meet the HSM base conditions with shoulder width of six feet; therefore, we used shoulder width ranging from four to seven feet in our dataset to represent the base condition sites. We found a total of 321 segments with this relaxed shoulder width and used them for validating the 2U SPFs.

		, ,	
Pasa Condition	HSM Base Condition	Available in	Available in Ohio
Base condition		Washington Data?	Data?
Lane width	12 feet	YES	YES
Shoulder width	6 feet	YES	YES
Shoulder type	Paved	YES	YES
Roadside hazard rating	3	YES	YES
Driveway density	5/mile	NO	YES
Horizontal curvature	None	YES	YES
Vertical curvature	None	NO	NO
Centerline rumble strips	None	YES	YES
Passing lanes	None	YES	YES
Two-way left-turn lanes	None	YES	YES
Lighting	None	NO	YES
Automated speed	Neno	NO	VEC
enforcement	none	NU	TES
Grade level	0%	YES	NO

Table 3-1: HSM Base Conditions and Data Availability, Two-Lane Undivided (2U) Segments

Variable WA (N = 361, 164.19 miles)		Mean	S.D.	Min	Max	
Segmer	nt length (mi))	0.454	0.528	0.1	5.42
AADT	· (veh/day)		4,573	4,121	210	21,622
Lane	width (ft)		12	0	12	12
Should	er width (ft)		6	0	6	6
Crash Type	Severity	No. of Crashes	Mean	S.D.	Min	Max
	КАВСО	996	2.759	3.703	0	31
Total	KABC	330	0.914	1.583	0	12
TOLAT	KAB	187	0.518	1.041	0	7
	KA	57	0.158	0.441	0	3
	КАВСО	204	0.565	1.375	0	12
Same direction	КАВС	79	0.219	0.641	0	4
Same unection	KAB	30	0.083	0.340	0	3
	KA	2	0.006	0.074	0	1
	КАВСО	0	0	0	0	0
Intersecting	KABC	0	0	0	0	0
direction	КАВ	0	0	0	0	0
	KA	0	0	0	0	0
	КАВСО	176	0.488	1.216	0	16
Opposite	KABC	80	0.222	0.633	0	7
direction	KAB	55	0.152	0.496	0	5
	KA	31	0.086	0.309	0	2
	КАВСО	616	1.706	2.343	0	17
Single vehicle	KABC	171	0.474	0.960	0	7
Single vehicle	KAB	102	0.283	0.694	0	5
	KA	24	0.066	0.281	0	2

Table 3-2: Descriptive Statistics for Base Condition SPF Estimation, Two-Lane Undivided (2U)Segments

Variab	Variable							
Ohio (N = 321, 1	Ohio (N = 321, 131.1 miles)							
Segment len	Segment length (mi)							
AADT (veh	/day)		5,162	2,852	490	15,340		
Lane widt	h (ft)		12	0	12	12		
Shoulder wi	dth (ft)		4.623	0.973	4	7		
Crash type	Severity	No. of Crashes	Mean	S.D.	Min	Max		
	КАВСО	850	2.648	4.235	0	33		
Total	КАВС	195	0.607	1.176	0	10		
Total	КАВ	146	0.455	0.925	0	6		
	KA	34	0.106	0.346	0	3		
Sama direction	КАВСО	115	0.358	0.901	0	8		
	КАВС	55	0.171	0.486	0	4		
Same direction	KAB	33	0.103	0.324	0	2		
	КА	5	0.016	0.124	0	1		
	КАВСО	0	0	0	0	0		
Intersecting direction	КАВС	0	0	0	0	0		
	КАВ	0	0	0	0	0		
	КА	0	0	0	0	0		
	КАВСО	58	0.181	0.479	0	3		
Opposite direction	КАВС	32	0.100	0.339	0	2		
Opposite direction	КАВ	27	0.084	0.300	0	2		
	КА	8	0.025	0.175	0	2		
	КАВСО	652	2.031	3.368	0	22		
Single vehicle	КАВС	100	0.312	0.691	0	5		
Single venicle	КАВ	79	0.246	0.574	0	4		
	КА	18	0.056	0.230	0	1		

Table 3-3: Descriptive Statistics for Base Condition Validation Data, Two-Lane Undivided (2U) Segments

3.1.2 Estimated Models

We estimated SPFs for rural two-lane highway segments as described in Section 2. Again, for convenience, the model form is given by

$$N = exp[b_0 + b_1 \times \ln(AADT) + \ln(L)], \qquad (3-1)$$

and the overdispersion parameter is determined by

$$k = \frac{1}{exp[c + \ln(L)]}.$$
(3-2)

Table 3-4 presents the estimated base condition SPFs for rural two-lane segments; estimated coefficient values and standard errors (in parentheses) are shown, along with the estimated dispersion parameter and fit statistics, as defined in Section 2.3.3. All of the estimated coefficients look reasonable, and all but a few are statistically significant. The fit statistics are also within reasonable ranges.

Crash Type Washington (N = 361, 164.19 mi.)	Severity	bo	b 1	с	–2LL	AIC	MAD
Total	КАВСО	-7.463 (0.520)	0.927 (0.062)	1.999 (0.166)	1364.6	1370.6	1.722
	КАВС	-9.006 (0.798)	0.977 (0.095)	1.479 (0.255)	825.9	831.9	0.831
Total	КАВ	-8.499 (1.003)	0.852 (0.120)	1.100 (0.327)	618.2	624.2	0.574
	КА	-9.853 (1.472)	0.872 (0.172)	2.527 [#] (2.703)	301.7	307.7	0.239
	КАВСО	-15.456 (1.168)	1.658 (0.135)	1.214 (0.292)	580	586	0.583
Same direction	КАВС	-17.721 (1.684)	1.807 (0.190)	1.326 (0.550)	334.2	340.2	0.283
	КАВ	-16.183 (2.313)	1.526 (0.262)	1.355 [#] (1.339)	192.7	198.7	0.133
	KA [*] (2 crashes)	-17.266 (7.845)	1.341 [#] (0.887)	13.434 (.)	27.6	33.6	0.011
	КАВСО	-10.525 (1.230)	1.085 (0.147)	0.636 (0.254)	628.1	634.1	0.594
Opposite direction	КАВС	-11.461 (1.573)	1.100 (0.185)	0.582 [#] (0.430)	379.7	385.7	0.318
	КАВ	-10.972 (1.842)	0.999 (0.218)	0.228 [#] (0.517)	292.7	298.7	0.234
	КА	-11.190 (2.021)	0.947 (0.235)	30.408 (0.014)	191.3	197.3	0.137
	КАВСО	-5.798 (0.572)	0.674 (0.069)	2.005 (0.223)	1120.7	1126.7	1.217
Single vehicle	КАВС	-6.582 (0.975)	0.613 (0.117)	1.117 (0.347)	573.4	579.4	0.520
	КАВ	-6.919 (1.227)	0.592 (0.148)	0.809 (0.460)	422.2	428.2	0.372
	КА	-10.949 (2.381)	0.899 (0.280)	0.446 [#] (1.254)	166	172	0.118

Table 3-4: Base Condition SPFs, Two-Lane Undivided (2U) Segments

* Moore-Penrose inverse is used in covariance matrix.

[#] Not significant at 90th percentile confidence interval.

3.1.3 Validation of Models

The prediction models for road segments were validated using the Ohio data. Table 3-5 displays the results for each model, including the total observed crashes, the total crashes predicted using these estimated SPFs and the HSM methodology, and two measures of effectiveness, the MAD and the MSPE (as defined in Section 2.3.3). We then calibrated these predictions using the HSM calibration methodology and provided the MAD and MSPE of these values. Finally, we estimated the calibration function defined in Srinivasan et al. (2016) for the dataset for each crash category; the Srinivasan method is described in detail in Section 6.1.1.

The resulting predictions and fit statistics are provided, and the predicted results are reasonable. In general, the calibration function performs slightly better than the calibration factor. Because the number

of observed same-direction KA crashes is small, the calibration factor is the highest of all crash categories (3.848, compared to the second highest, 1.749, for SV KABCO), and the calibration function fails to converge. In general, the models calibrate reasonably well for the Ohio data.

Crach	Observed	ЦСМ			Calibration Factor (HSM) Calibration Function (Srinivasan et al. 2016)					2016)				
Туре	Crashes	Pred.	MAD	MSPE	Calibration Factor	N Fitted	MAD	MSPE	a	b	k	N Fitted	MAD	MSPE
КАВСО	850	630.218	1.732	9.906	1.349	850	1.819	9.021	1.392 (0.070)	0.972 (0.064)	0.511 (0.089)	850.076	1.814	8.992
КАВС	195	208.075	0.603	0.896	0.937	195	0.588	0.889	0.934 [#] (0.088)	0.917 (0.090)	0.411 (0.177)	194.205	0.590	0.895
КАВ	146	116.631	0.457	0.574	1.252	146	0.476	0.549	01.212 (0.118)	0.958 (0.100)	0.304 (0.206)	144.783	0.480	0.554
КА	34	35.819	0.169	0.106	0.949	34	0.166	0.106	0.950 [#] (0.360)	1.000 (0.182)	0.001 (0.455)	34.038	0.166	0.106
SD KABCO	115	130.238	0.467	0.637	0.883	115	0.446	0.615	0.844 [#] (0.144)	0.859 (0.109)	0.967 (0.371)	114.661	0.452	0.603
SD KABC	55	50.739	0.234	0.212	1.084	55	0.241	0.215	0.731 [#] (0.245)	0.699 (0.121)	0.473 (0.450)	54.951	0.253	0.203
SD KAB	33	19.586	0.130	0.093	1.685	33	0.151	0.091	1.100 [#] (0.411)	0.811 (0.156)	0.000 [#] (0.003)	33.049	0.158	0.090
SD KA	5	1.299	0.020	0.016	3.848	5	0.031	0.016			Failed to Co	nverge		
OD KABCO	58	116.777	0.367	0.295	0.497	58	0.256	0.194	0.441 (0.170)	0.806 (0.137)	0.255 (0.425)	57.834	0.180	0.062
OD KABC	32	52.208	0.204	0.115	0.613	32	0.161	0.103	0.493 (0.323)	0.842 (0.180)	0.215 (0.739)	32.008	0.100	0.020
OD KAB	27	35.284	0.156	0.083	0.765	27	0.139	0.081	0.568 (0.415)	0.833 (0.196)	0.000 [#] (0.013)	27.046	0.084	0.014
OD KA	8	18.046	0.075	0.032	0.443	8	0.047	0.030	0.494 (0.951)	1.045 (0.373)	0.014 [#] (1.017)	8.010	0.025	0.002
SV KABCO	652	372.703	1.505	8.067	1.749	652	1.536	6.425	1.714 (0.064)	1.050 (0.075)	0.558 (0.101)	657.934	1.897	8.420
SV KABC	100	76.806	0.353	0.369	1.302	100	0.373	0.355	1.409 (0.167)	1.077 (0.122)	0.201 (0.215)	100.256	0.315	0.211
SV KAB	79	59.956	0.297	0.258	1.318	79	0.315	0.247	1.436 (0.192)	1.069 (0.127)	0.001 [#] (0.220)	78.998	0.260	0.145
SV KA	18	15.132	0.090	0.048	1.190	18	0.097	0.048	1.441 (0.678)	1.075 (0.252)	0.000 [#] (0.000)	17.995	0.075	0.033

Table 3-5: Calibration and Validation of Washington SPFs Using Ohio Data, Two-Lane Undivided (2U) Segments

[#]Not significant at 90th percentile confidence interval.

Copyright National Academy of Sciences. All rights reserved.

3.2 Intersections

3.2.1 Estimation and Validation Data

SPFs for two-lane rural highway intersections were estimated and validated using data collected from Minnesota and Ohio. The base conditions for three-leg stop-controlled (3ST), four-leg stop-controlled (4ST), and four-leg signal-controlled (4SG) intersections, as shown in Table 3-6, are specified in the current HSM. All of the variables defining base conditions for all three intersection types are available in Minnesota and Ohio. The Minnesota data include 141 base condition 3ST intersection sites and 198 base condition 4ST intersection sites. The Ohio data have total of 2,081 base condition 3ST intersections and 662 base condition 4ST intersections. Minnesota data were used for model estimation and Ohio data for model validation for both the 3ST and 4ST intersections.

Base Condition (3ST, 4ST, and	Critoria	Available in	Available in Ohio	
4SG)	Citteria	Minnesota Data	Data	
Intersection skew angle	0 degrees	YES	YES	
	(Not applicable for 4SG)			
Intersection left-turn lanes	None	YES	YES	
Intersection right-turn lanes	None	YES	YES	
Lighting	None	YES	YES	

Table 3-6: HSM Base Conditions and Data Availability, Two-Lane Intersections

Table 3-7 shows the sample sizes for 4SG intersections for the base and modified base conditions. None of the 4SG intersections from the Minnesota data satisfied the base conditions, and only 48 intersections from the Ohio data satisfied the HSM base conditions. We therefore used a modified base condition for lighting (that is, presence of lighting = "Present") to get a large enough sample for both model estimation and validation. We used data from Ohio on a total of 202 4SG intersections with modified base conditions to estimate the SPFs, and 25 4SG intersections from Minnesota were used for validation.

Table 3-7: Base Condition Criteria and Data Availability, Two-Lane Four-Leg Signal-Controlled (4SG) Intersections

Data	Condition	Lighting	Intersection Left- Turn Lanes	Intersection Right- Turn Lanes	Sample Size
Minnesota	Base condition	Not present	0	0	0
Minnesota	Modified	Present	0	0	25
Ohio	Base condition	Not present	0	0	48
	Modified	Present	0	0	202

Table 3-8 and Table summarize descriptive statistics for, respectively, the data used to develop models and the data used to validate them for base conditions at 3ST intersections, including the total number of crashes at all intersections. Table 3-10 and Table 3-11 present descriptive statistics for the data used to develop and validate models for base conditions at 4ST intersections. Table 3-12 and Table 3-13 show descriptive statistics for 4SG intersections.

va Minnesc	ota (N = 141)	Mean	S.D.	Min	Max	
Major AA	DT (veh/day)		3,033	3,393	308	20,092
Minor AA	DT (veh/day)	360	451	4	3,064	
Total entering	vehicles (veh/	day)	3,392	3,513	316	20,824
Presenc	e of lighting		None	None	None	None
Presence of	f left-turn lane	S	0	0	0	0
Presence of	right-turn lane	es	0	0	0	0
Skew	angle (°)		0	0	0	0
Crash Type	Severity	No. of Crashes	Mean	S.D.	Min	Max
	КАВСО	323	2.291	3.476	0	22
Tatal	КАВС	114	0.809	1.711	0	15
Total	КАВ	47	0.333	0.808	0	5
	КА	10	0.071	0.308	0	2
	КАВСО	83	0.589	1.942	0	19
Como divertion	КАВС	35	0.248	1.190	0	13
Same direction	КАВ	12	0.085	0.485	0	5
	КА	3	0.021	0.188	0	2
	КАВСО	39	0.277	0.634	0	4
Intercepting direction	КАВС	18	0.092	0.357	0	2
intersecting direction	КАВ	6	0.064	0.298	0	2
	КА	2	0.021	0.188	0	2
	КАВСО	39	0.277	0.728	0	5
Opposite direction	КАВС	13	0.128	0.445	0	3
Opposite direction	КАВ	9	0.043	0.203	0	1
	КА	3	0.014	0.119	0	1
	КАВСО	162	1.149	1.521	0	8
Single vehicle	КАВС	48	0.340	0.664	0	3
Single vehicle	КАВ	20	0.142	0.407	0	2
	КА	2	0.014	0.119	0	1

 Table 3-8: Descriptive Statistics for Base Condition SPFs, Two-Lane Three-Leg Stop-Controlled

 (3ST) Intersections
Va ۵) Ohio	riable N = 2,081)		Mean	S.D.	Min	Max
Major AAI	DT (veh/day)		2,214	1,889	90	15,340
Minor AA	DT (veh/day)		817	721	19	3,050
Total entering	vehicles (veh/o	day)	3,031	2,280	135	15,845
Presence	e of lighting		None	None	None	None
Presence of	left-turn lanes	0	0	0	0	
Presence of	right-turn lane	25	0	0	0	0
Skew	angle (°)	0	0	0	0	
Crash Type	Severity	No. of Crashes	Mean	S.D.	Min	Max
	КАВСО	736	0.354	0.879	0	12
Tatal	KABC	288	0.138	0.446	0	6
TOLAI	КАВ	211	0.101	0.360	0	5
	KA	62	0.030	0.170	0	1
	КАВСО	135	0.065	0.356	0	7
Sama direction	КАВС	54	0.026	0.194	0	4
Same direction	КАВ	31	0.015	0.136	0	2
	КА	9	0.004	0.066	0	1
	КАВСО	76	0.032	0.187	0	2
Intercepting direction	KABC	33	0.019	0.139	0	2
intersecting direction	КАВ	24	0.015	0.127	0	2
	KA	3	0.007	0.085	0	1
	KABCO	67	0.037	0.223	0	3
Opposite direction	KABC	39	0.016	0.139	0	2
Opposite direction	КАВ	32	0.012	0.111	0	2
	KA	15	0.001	0.038	0	1
	KABCO	403	0.194	0.554	0	5
Single vehicle	KABC	140	0.067	0.290	0	3
	КАВ	105	0.050	0.248	0	3
	КА	32	0.015	0.123	0	1

Table 3-9: Descriptive Statistics for Base Condition Validation Data, Two-Lane Three-Leg Stop-Controlled (3ST) Intersections

Va Minneso	ariable ota (N = 198)		Mean	S.D.	Min	Max
Major AA	DT (veh/day)	1,842.46	1,419.77	147.00	8,461.40
Minor AA	DT (veh/day)	395.83	667.09	4.00	4,740.00
Total entering	vehicles (vel	n/day)	2,238.30	1,741.04	196.60	9,912.80
Presenc	e of lighting		None	None	None	None
Presence of	f left-turn lar	nes	0	0	0	0
Presence of	right-turn la	nes	0	0	0	0
Skew	angle (°)		0	0	0	0
Crash Type	Severity	No. of Crashes	Mean	S.D.	Min	Max
	КАВСО	345	1.742	2.273	0	15
Total	КАВС	123	0.621	1.172	0	10
Total	КАВ	70	0.354	0.804	0	6
	KA	17	0.086	0.346	0	2
	КАВСО	70	0.354	0.626	0	3
Same direction	КАВС	19	0.096	0.295	0	1
Same un ection	КАВ	10	0.051	0.220	0	1
	KA	3	0.015	0.122	0	1
	КАВСО	107	0.207	0.475	0	2
Intersecting direction	КАВС	57	0.051	0.220	0	1
intersecting un ection	КАВ	36	0.015	0.122	0	1
	KA	11	0.000	0.000	0	0
	КАВСО	41	0.540	1.285	0	12
Opposite direction	КАВС	10	0.288	0.897	0	8
opposite direction	КАВ	3	0.182	0.594	0	5
	KA	0	0.056	0.270	0	2
	КАВСО	127	0.641	0.883	0	4
Single vehicle	KABC	37	0.187	0.451	0	2
Single vehicle	КАВ	21	0.106	0.309	0	1
	KA	3	0.015	0.122	0	1

 Table 3-10: Descriptive Statistics for Base Condition SPFs, Two-Lane Four-Leg Stop-Controlled

 (4ST) Intersections

Va Ohio	riable (N = 662)		Mean	S.D.	Min	Max
Major AA	DT (veh/day)		2,238	1,565	160	7,740
Minor AA	DT (veh/day)		987	970	33	4,496
Total entering	vehicles (veh/o	day)	3,225	2,266	270	9,780
Presence	e of lighting		None	None	None	None
Presence of	left-turn lanes	0	0	0	0	
Presence of	right-turn lane	S	0	0	0	0
Skew	angle (°)		0	0	0	0
Crash Type	Severity	No. of Crashes	Mean	S.D.	Min	Max
	KABCO	201	0.304	0.946	0	12
Total	КАВС	103	0.156	0.562	0	7
TOtal	КАВ	84	0.127	0.491	0	7
	KA	24	0.036	0.210	0	2
	KABCO	30	0.045	0.229	0	2
Same direction	КАВС	12	0.018	0.144	0	2
Same unection	КАВ	6	0.009	0.095	0	1
	KA	0	0.000	0.000	0	0
	KABCO	91	0.014	0.116	0	1
Intersecting direction	КАВС	63	0.005	0.067	0	1
	КАВ	54	0.005	0.067	0	1
	KA	17	0.003	0.055	0	1
	KABCO	9	0.137	0.676	0	10
Opposite direction	КАВС	3	0.095	0.484	0	7
opposite direction	КАВ	3	0.082	0.439	0	7
	KA	2	0.026	0.176	0	2
	KABCO	54	0.082	0.320	0	3
Single vehicle	КАВС	15	0.023	0.159	0	2
	КАВ	14	0.021	0.154	0	2
	КА	4	0.006	0.078	0	1

Table 3-11: Descriptive Statistics for Base Condition Validation Data, Two-Lane Four-Leg Stop-Controlled (4ST) Intersections

Va Ohio	riable (N = 202)		Mean	S.D.	Min	Max
Major AA	DT (veh/day)	5,344.55	2,740.54	910	14,790
Minor AA	.DT (veh/day)	2,476.67	2,069.78	95	11,641
Total entering	vehicles (veł	n/day)	7,821.22	4,022.69	1,201	24,690
Presenc	e of lighting		Present	Present	Present	Present
Presence of	f left-turn lar	nes	0	0	0	0
Presence of	right-turn la	nes	0	0	0	0
Skew	angle (°)		N/A	N/A	N/A	N/A
Crash Type	Severity	No. of Crashes	Mean	S.D.	Min	Max
	КАВСО	454	2.248	3.390	0	25
Total	КАВС	108	0.535	1.070	0	8
Total	КАВ	63	0.312	0.724	0	6
	KA	16	0.079	0.305	0	2
	КАВСО	249	1.233	2.299	0	18
Same direction	KABC	49	0.243	0.635	0	5
Same un ection	KAB	22	0.109	0.357	0	2
	KA	4	0.020	0.140	0	1
	КАВСО	137	0.074	0.263	0	1
Intersecting direction	КАВС	43	0.025	0.156	0	1
intersecting unection	KAB	29	0.020	0.140	0	1
	KA	6	0.010	0.099	0	1
	КАВСО	15	0.678	1.293	0	8
Opposite direction	КАВС	5	0.213	0.589	0	5
	КАВ	4	0.144	0.451	0	4
	KA	2	0.030	0.170	0	1
	КАВСО	53	0.262	0.635	0	4
Single vehicle	КАВС	11	0.054	0.227	0	1
Single verilcie	КАВ	8	0.040	0.196	0	1
	KA	4	0.020	0.140	0	1

Table 3-12: Descriptive Statistics for Modified Base Condition SPFs, Two-Lane Four-Leg Signal-Controlled (4SG) Intersections

Va Minnes	riable ota (N = 25)		Mean	S.D.	Min	Max
Major AA	DT (veh/day)		7,780	3,178	2,450	18,525
Minor AA	DT (veh/day))	3,472	2,692	353	10,500
Total entering	vehicles (veh	/day)	11,252	5,238	2,803	29,025
Presenc	e of lighting		Present	Present	Present	Present
Presence of	f left-turn lan	0	0	0	0	
Presence of	right-turn laı	0	0	0	0	
Skew	angle (°)		N/A	N/A	N/A	N/A
Crash Type	Severity	No. of Crashes	Mean	S.D.	Min	Max
	КАВСО	136	5.440	3.536	0	16
Total	КАВС	34	1.360	1.705	0	8
TOLAI	КАВ	11	0.440	0.961	0	4
	KA	1	0.040	0.200	0	1
	КАВСО	68	2.720	2.390	0	9
Same direction	КАВС	12	0.480	0.963	0	3
Same unection	КАВ	1	0.040	0.200	0	1
	KA	0	0.000	0.000	0	0
	КАВСО	21	0.840	1.179	0	4
Intercepting direction	КАВС	9	0.360	0.638	0	2
intersecting direction	КАВ	4	0.160	0.374	0	1
	KA	1	0.040	0.200	0	1
	КАВСО	33	1.320	1.145	0	3
Opposite direction	КАВС	9	0.360	0.569	0	2
Opposite direction	KAB	3	0.120	0.332	0	1
	KA	0	0.000	0.000	0	0
	КАВСО	14	0.560	0.821	0	3
Single vehicle	KABC	4	0.160	0.473	0	2
Single vehicle	KAB	3	0.120	0.440	0	2
	KA	0	0.000	0.000	0	0

Table 3-13: Descriptive Statistics for Modified Base Condition Validation Data, Two-Lane Four-Leg Signal-Controlled (4SG) Intersections

3.2.2 Estimated Models

We first estimated base condition SPFs for all two-lane rural intersections using NB modeling, as defined in Section 2. For some of these crash type–crash severity combinations, a dispersion factor of 0 was found; for those types, we show the Poisson modeling results as well. For some models, the parameter on AADT_min was not significant, so we estimated and show models for those crash types with total AADT instead. Following are the model forms used (as defined in Section 2):

$$N = exp[b_0 + b_1 \times \ln(AADT_{maj}) + b_2 \times \ln(AADT_{min})]$$
(3-3)

or

$$N = exp[b_0 + b_3 \times \ln(AADT_{total})]$$
(3-4)

Table 3-14 shows the NB modeling results for base conditions at 3ST intersections, while Table 3-15 shows the Poisson modeling results for the model types with a 0 dispersion factor for these intersections. Some of the base condition models have AADT parameter values that are not significant; this is largely due to the small number of crashes and small sample sizes. Otherwise, the parameter values are all within expected ranges.

Base condition SPFs for 4ST intersections are presented in Table 3-16 and Table 3-17 for base condition models estimated using NB distribution and Poisson distribution, respectively. These results are similar to those for the 3ST intersections and also reasonable.

Modified base condition SPFs for 4SG intersections are presented in Table 3-18 and Table 3-19 for base condition models estimated using NB distribution and Poisson distribution, respectively.

Crash Type Minnesota (N = 141)	Severity	bo	b1	b2	b₃	k	–2LL	AIC	MAD
	КАВСО	-7.924 (0.857)	0.656 (0.099)	0.295 (0.067)	-	0.622 (0.153)	253.6	515.2	1.633
T -+-1	КАВС	-9.628 (1.301)	0.725 (0.144)	0.312 (0.102)	-	0.974 (0.340)	153.9	315.9	0.845
Iotai	КАВ	-10.241 (1.891)	0.581 (0.214)	0.468 (0.153)	-	1.383 (0.708)	93.2	194.5	0.461
	КА	-11.873 (4.477)	-	-	0.908 (0.548)	5.123 (4.870)	34.1	74.2	0.137
	КАВСО	-15.506 (2.178)	1.291 (0.221)	0.452 (0.141)	-	1.777 (0.600)	108.9	225.9	0.751
Same	КАВС	-18.598 (3.506)	1.569 (0.337)	0.420 (0.231)	-	2.775 (1.370)	60.1	128.2	0.387
direction	КАВ	-16.952 (4.337)	-	-	1.501 (0.506)	5.281 (4.458)	30.8	67.6	0.146
	KA (3 crashes)	-13.794 (5.693)	-	-	0.984 [#] (0.665)	0.000 [*] (0.063)	14.1	34.2	0.042
	КАВСО	-14.120 (2.365)	0.818 (0.244)	0.753 (0.191)	-	0.995 (0.653)	73.7	73.7 155.5	0.353
Intersecting	КАВС	-15.174 (3.164)	0.977 (0.320)	0.583 (0.261)	-	1.583 (1.494)	45.5	99.0	0.208
direction	KAB (6 crashes)	-13.383 (4.052)	-	-	1.017 (0.472)	0.000 [*] (0.005)	22.5	51.0	0.078
	KA (2 crashes)	-10.629 (6.539)	-	-	0.556 [#] (0.795)	0.000 [*] (0.000)	10.2	26.5	0.028
	КАВСО	-11.716 (1.581)	0.746 (0.181)	0.455 (0.133)	-	0.000 [*] (0.000)	78.8	165.6	0.340
Opposite	КАВС	-15.272 (3.605)	1.025 (0.406)	0.476 (0.258)	-	1.415 (1.720)	37.0	82.0	0.146
direction	KAB (9 crashes)	-15.571 (4.585)	0.371 [#] (0.523)	1.301 (0.511)		1.167 (1.626)	26.0	60.1	0.105
	KA (3 crashes)	-12.867 (5.580)	-	-	0.875 [#] (0.658)	0.000 [*] (0.050)	14.3	34.6	0.042
	КАВСО	-5.916 (0.907)	0.409 (0.112)	0.173 (0.076)	-	0.535 (0.203)	198.6	405.3	1.023
Single vohicle	КАВС	-5.398 (1.464)	-	-	0.302 (0.183)	0.787 (0.569)	105.7	217.4	0.492
Single vehicle	KAB (20crashes)	-5.854 (2.264)	-	-	0.249 [#] (0.285)	1.309 (1.486)	59.9	125.9	0.249
	KA (2 crashes)	-7.515 [#] (6.355)	-	-	0.168 [#] (0.802)	0.000 [*] (0.000)	10.4	26.9	0.028

Table 3-14: Base Condition SPFs, Two-Lane Three-Leg Stop-Controlled (3ST) Intersections

* Poisson distribution used; scale = square root of Deviance/DOF.

[#]Not significant at 90th percentile confidence interval.

Crash Type Minnesota (N = 141)	Severity	bo	b1	b2	b₃	Scale	–2LL	AIC	MAD
Same direction	KA (3 crashes)	-13.794 (2.346)	-	-	0.984 (0.274)	0.412 (0)	14.1	34.2	0.042
Intersecting	KAB (6 crashes)	-13.383 (1.976)	-	-	1.017 (0.230)	0.487 (0)	22.5	49.0	0.078
direction	KA (2 crashes)	-10.629 (2.255)	-	-	0.556 (0.274)	0.344 (0)	10.2	24.5	0.028
Opposite	КАВСО	-11.716 (1.307)	0.746 (0.150)	0.455 (0.110)	-	0.826 (0)	78.8	163.6	0.340
direction	KA (3 crashes)	-12.867 (2.323)	-	-	0.8752 (0.274)	0.416 (0)	14.3	32.6	0.042
Single vehicle	KA (2 crashes)	-7.513 (2.221)	-	-	0.1681 [#] (0.280)	0.349 (0)	10.4	24.9	0.028

Table 3-15: Base Condition SPF Using Poisson Distribution, Two-Lane Three-Leg Stop-Controlled (3ST) Intersections

[#] Not significant at 90th percentile confidence interval.

Crash Type Minnesota (N = 198)	Severity	b _o	b1	b2	b₃	k	–2LL	AIC	MAD
	КАВСО	-6.620 (0.805)	0.451 (0.112)	0.339 (0.06)	-	0.435 (0.119)	325.9	659.9	1.308
Total	КАВС	-8.747 (1.306)	-	-	0.825 (0.168)	0.929 (0.312)	200.8	407.7	0.730
Total	КАВ	-8.511 (1.676)	-	-	0.723 (0.217)	1.564 (0.630)	146.5	299.1	0.527
	КА	-10.539 (3.235)	-	-	0.799 (0.416)	4.683 (3.524)	55.6	117.2	0.156
	КАВСО	-7.914 (1.294)	0.364 (0.184)	0.399 (0.101)	-	0.000 [*] (0.001)	138.3	284.6	0.439
Same	КАВС	-7.538 (2.469)	-	-	0.429 [#] (0.320)	0.000 [*] (0.000)	62.6	131.2	0.172
direction	KAB (10 crashes)	-4.284 [#] (3.337)	-	-	-0.087 [#] (0.448)	0.000 [*] (0.002)	39.8	85.6	0.096
	KA (0 crash)	-	-	-	-	-	-	-	-
	КАВСО	-10.362 (1.320)	0.475 (0.181)	0.722 (0.103)	-	0.415 (0.219)	158.4	324.8	0.568
Intersecting	КАВС	-12.896 (2.284)	-	-	1.248 (0.292)	2.906 (1.094)	115.9	237.8	0.438
direction	КАВ	-12.779 (2.425)	-	-	1.175 (0.306)	2.178 (1.183)	89.1	184.2	0.297
	КА	-15.115 (4.079)	-	-	1.318 (0.508)	3.094 (3.627)	38.3	82.6	0.101
	КАВСО	-10.514 (1.776)	0.769 (0.242)	0.224 (0.125)	-	0.000 [*] (0.000)	99.8	207.6	0.303
Opposito	КАВС	-11.702 (3.572)	-	-	0.881 (0.450)	0.000 [*] (0.002)	37.8	81.7	0.094
direction	KAB (3 crashes)	-9.979 [#] (6.251)	-	-	0.506 [#] (0.806)	0.000 [*] (0.000)	15.3	36.7	0.030
	KA (2 crashes)	- 32.191 [#] (4290)	-	-	-0.117 [#] (57709)	849.22 * (0.000)	0	-	-
	КАВСО	-5.533 (1.044)	-	-	0.415 (0.136)	0.256 (0.203)	210.2	426.5	0.688
Single vehicle	КАВС	-6.412 (1.838)	-	-	0.369 [#] (0.239)	0.439 (0.714)	101.0	208.0	0.310
Single vehicle	KAB (21 crashes)	-6.874 (2.337)	-	-	0.355 [#] (0.304)	0.000* (0.001)	67.4	140.8	0.188
	KA (3 crashes)	-2.405 [#] (6.079)	-	-	-0.508 [#] (0.839)	0.000* (0.000)	15.3	36.7	0.030

Table 3-16: Base Condition SPFs, Two-Lane Four-Leg Stop-Controlled (4ST) Intersections

*Poisson distribution used; scale = square root of Deviance/DOF.

[#]Not significant at 90th percentile confidence interval.

Crash Type Minnesota (N = 198)	Severity	bo	b1	b2	b₃	Scale	–2LL	AIC	MAD
	КАВСО	-7.914 (1.159)	0.364 (0.165)	0.399 (0.090)	-	0.895 (0.000)	138.3	282.6	0.439
Same	КАВС	-7.538 (1.647)	-	-	0.429 [#] (0.213)	0.667 (0.000)	62.6	129.2	0.172
direction	KAB (10 crashes)	-4.284 (1.841)	-	-	-0.087 [#] (0.247)	0.551 (0.002)	39.8	83.6	0.096
	KA (3 crashes)	-8.564 (2.203)	-	-	0.322 [#] (0.287)	0.357 (0.000)	15.4	34.9	0.030
	КАВСО	-10.514 (1.428)	0.769 (0.194)	0.224 (0.101)	-	0.803 (0.000)	99.8	205.6	0.303
Opposite direction	КАВС	-11.702 (1.905)	-	-	0.881 (0.240)	0.535 (0.000)	37.8	79.7	0.094
	KAB (3 crashes)	-9.979 (2.221)	-	-	0.506 (0.286)	0.355 (0.000)	15.3	34.7	0.030
Single vehicle	KAB (21 crashes)	-6.874 (1.609)	-	-	0.355 (0.209)	0.688 (0.000)	67.4	138.8	0.188
Single venicle	KA (3 crashes)	-2.406 [#] (2.160)	-	-	-0.508 (0.298)	0.355 (0.000)	15.3	34.7	0.030

Table 3-17: Base Condition SPFs Using Poisson Distribution, Two-Lane Four-Leg Stop-Controlled (4ST) Intersections

[#]Not significant at 90th percentile confidence interval.

Crash Type Ohio (N = 202)	Severity	bo	b 1	b2	b₃	k	–2LL	AIC	MAD
	КАВСО	-8.163 (1.692)	-	-	0.877 (0.189)	1.829 (0.299)	381.1	768.3	2.248
Total	КАВС	-12.337 (2.393)	1.028 (0.280)	0.231 (0.132)	-	1.403 (0.470)	185.9	379.9	0.690
TOLAI	КАВ	-11.059 (2.828)	-	-	0.981 (0.313)	1.376 (0.630)	139.1	284.2	0.459
	KA (16 crashes)	-8.788 (4.898)	-	-	0.578 [#] (0.545)	2.349 (2.592)	56.3	118.6	0.147
	КАВСО	-14.523 (2.184)	-	-	1.509 (0.242)	1.613 (0.340)	277.2	560.5	1.324
Same	КАВС	-15.878 (3.219)	1.242 (0.372)	0.341 (0.176)	-	0.976 (0.632)	111.9	231.8	359
direction	КАВ	-14.740 (4.419)	-	-	1.269 (0.483)	0.831 (1.221)	68.0	142.0	0.188
	KA (4 crashes)	0.422 [#] (7.202)	-	-	-0.623 [#] (0.833)	0.000 [*] (0.003)	19.4	44.8	0.039
	КАВСО	-5.767 (2.209)	-	-	0.480 (0.248)	2.358 (0.571)	220.4	446.9	0.896
Intersecting	КАВС	-11.026 (3.282)	0.675 (0.388)	0.341 (0.199)	-	1.731 (0.926)	108.0	224.1	0.343
direction	КАВ	-10.318 (3.738)	-	-	0.813 (0.414)	1.679 (1.238)	84.7	175.5	0.248
	KA (6 crashes)	-14.890 (7.891)	-	-	1.143 [#] (0.863)	0.000 [*] (0.000)	26.1	58.2	0.057
	KABCO (15 crashes)	-9.404 (2.793)	-	-	0.861 (0.528)	0.000 [*] (0.000)	52.5	111.1	0.135
Opposite	KABC (5 crashes)	-13.000 [#] (8.371)	-	-	0.916 [#] (0.921)	0.000 [*] (0.000)	22.9	51.9	0.048
direction	KAB (4 crashes)	-9.041 [#] (8.695)	-	-	0.452 [#] (0.969)	0.000 [*] (0.012)	19.5	45.1	0.039
	KA (2 crashes)	-7.825# (11.851)	-	-	0.238 [#] (1.329)	0.000 [*] (0.000)	11.2	28.4	0.020
	KABCO (53 crashes)	-5.325 (2.701)	-	-	0.325 [#] (0.303)	2.029 (0.909)	128.6	263.2	0.423
Single	KABC (11 crashes)	-11.854 (5.610)	-	-	0.876 [#] (0.618)	0.000 [*] (0.001)	41.9	89.8	0.102
Single vehicle	KAB (8 crashes)	-14.053 (6.778)	-	-	1.083 [#] (0.743)	0.000 [*] (0.002)	32.6	71.3	0.075
	KA (4 crashes)	-17.692 (9.993)	-	-	1.405 [#] (1.087)	0.000 [*] (0.008)	18.7	43.5	0.039

 Table 3-18: Modified Base Condition SPFs, Two-Lane Four-Leg Signal-Controlled (4SG)

 Intersections

* Poisson distribution used; scale = square root of Deviance/DOF.

[#] Not significant at 90th percentile confidence interval.

Crash Type Ohio (N = 202)	Severity	b _o	b1	b2	b₃	Scale	–2LL	AIC	MAD
Same direction	KA (4 crashes)	0.422 [#] (2.828)	-	-	-0.623 [#] (0.327)	0.392 (0.000)	19.4	42.8	0.039
Intersecting direction	KA (6 crashes)	-14.890 (3.540)	-	-	1.143 (0.387)	0.448 (0.000)	26.1	56.2	0.057
	KABCO (15 crashes)	-11.404 (2.938)	-	-	0.861 (0.323)	0.613 (0.000)	52.5	109.1	0.135
Opposite	KABC (5 crashes)	-13.000 (3.547)	-	-	0.916 (0.390)	0.423 (0.000)	22.9	49.9	0.048
direction	KAB (4 crashes)	-9.041 (3.431)	-	-	0.452 [#] (0.382)	0.394 (0.000)	19.5	43.1	0.039
	KA (2 crashes)	-7.825 [#] (3.597)	-	-	0.238 [#] (0.403)	0.303 (0.000)	11.2	26.4	0.020
	KABC (11 crashes)	-11.854 (3.120)	-	-	0.876 (0.343)	0.556 (0.001)	41.9	87.8	0.102
Single vehicle	KAB (8 crashes)	-14.053 (3.366)	-	-	1.083 (0.369)	0.496 (0.002)	32.6	69.3	0.075
	KA (4 crashes)	-17.692 (3.838)	-	-	1.405 (0.417)	0.384 (0.000)	18.7	41.5	0.039

 Table 3-19: Modified Base Condition SPFs Using Poisson Distribution, Two-Lane Four-Leg

 Signal-Controlled (4SG) Intersections

[#] Not significant at 90th percentile confidence interval.

3.2.3 Validation of Models

The prediction models for all three types of intersections were validated in the same way as the segment models. The 3ST and 4ST models were estimated using Minnesota data and validated using Ohio data, while the 4SG models were estimated using Ohio data and validated using Minnesota data. The results are presented in Table 3-20 through Table 3-22, in the same format as Table 3-5.

As for the segment models, the predicted results for intersections are reasonable. Again, the calibration function generally performs slightly better than the calibration factor. Also, the calibration function fails to converge for many of the crash categories that have very few or no crashes, most commonly categories for KA crashes of various types. For the 3ST and 4ST models, the calibration factors are almost all less than 1.0, and the MAD and MSPE values are within reasonable ranges. Because the estimation and validation data sources are reversed for the 4SG models, the calibration factors are all greater than 1.0, some substantially so. It is noted that a total of only 136 crashes is in this dataset, and a small number of intersections (202 estimation and 25 validation).

Crash	Observed	HSM		MCDE	Cal	ibration Fac	tor (CF) (HSM)		Calibration	Function (Sr	rinivasan et a	l. 2016)	
Туре	Crashes	Pred.	IVIAD	IVISPE	CF*	N Fitted	MAD	MSPE	а	b	k	N Fitted	MAD	MSPE
КАВСО	736	2342.83	1.006	1.643	0.314	736	0.514	0.725	0.330	0.832	2.168	733.442	0.519	0.725
									(0.052)	(0.074)	(0.238)			
КАВС	288	825.61	0.415	0.301	0.349	288	0.234	0.191	0.306 (0.103)	0.819 (0.095)	1.842 (0.413)	286.799	0.236	0.191
КАВ	211	416.92	0.253	0.145	0.506	211	0.178	0.126	0.349 (0.173)	0.735 (0.102)	1.595 (0.498)	210.762	0.180	0.126
КА	62	61.76	0.057	0.029	1.004	62	0.057	0.029	0.559 [#] (0.680)	0.824 (0.198)	0.000 [#] (0.001)	62.053	0.057	0.029
SD KABCO	135	586.58	0.291	0.239	0.230	135	0.116	0.118	0.219 (0.145)	0.949 (0.105)	4.197 (1.095)	132.966	0.116	0.118
SD KABC	54	211.45	0.116	0.056	0.255	54	0.049	0.036	0.213 (0.301)	0.891 (0.139)	5.221 (2.430)	53.532	0.049	0.036
SD KAB	31	54.66	0.040	0.018	0.567	31	0.029	0.018	1.449 [#] (0.679)	1.310 (0.224)	0.000 [#] (0.505)	31.013	0.029	0.018
SD KA	9	16.94	0.012	0.004	0.531	9	0.009	0.004			Failed to Co	onverge		
ID KABCO	76	420.62	0.218	0.121	0.181	76	0.069	0.050	0.101 (0.244)	0.539 (0.122)	7.292 (2.673)	76.667	0.070	0.049
ID KABC	33	158.80	0.088	0.028	0.208	33	0.031	0.019	0.110 (0.444)	0.707 (0.176)	0.000 [#] (0.500)	33.138	0.031	0.019
ID KAB	24	33.57	0.027	0.012	0.715	24	0.023	0.012			Failed to Co	onverge		
ID KA	3	12.17	0.007	0.001	0.247	3	0.003	0.001			Failed to Co	onverge		
OD KABCO	67	322.61	0.172	0.062	0.208	67	0.061	0.034	0.154 (0.295)	0.812 (0.160)	1.584 (1.363)	66.867	0.061	0.034
OD KABC	39	100.26	0.064	0.022	0.389	39	0.036	0.019	0.142 (0.491)	0.626 (0.161)	0.0035 (1.008)	39.138	0.037	0.019
OD KAB	32	142.49	0.080	0.025	0.225	32	0.030	0.016			Failed to Co	onverge		
OD KA	15	17.42	0.015	0.007	0.861	15	0.014	0.007			Failed to Co	onverge		
SV KABCO	403	1122.74	0.562	0.450	0.359	403	0.325	0.302	0.336 (0.105)	0.871 (0.143)	2.552 (0.398)	404.057	0.326	0.302
SV KABC	140	299.21	0.193	0.089	0.468	140	0.126	0.083	1.257 [#] (0.786)	1.521 (0.411)	3.319 (1.073)	140.070	0.126	0.083
SV KAB	105	124.80	0.105	0.061	0.841	105	0.096	0.061	5.611 [#] (1.562)	1.682 (0.561)	3.791 (1.475)	106.050	0.096	0.061
SV KA	32	12.55	0.021	0.015	2.550	32	0.030	0.015			Failed to Co	onverge		

Table 3-20: Calibration and Validation of Minnesota SPFs Using Ohio Data, Three-Leg Stop-Controlled (3ST) Intersections

* CF = Calibration Factor; # Not significant at 90th percentile confidence interval.

Table 3-21: Calibratio						
Crash Type	Observed Crashes					
КАВСО	201					
КАВС	103					
КАВ	84					
KA	24					
SD KABCO	30					
SD KABC	12					
SD KAB	6					
SD KA	0					
ID KABCO	91					
ID KABC	63					
ID KAB	54					
ID KA	17					
OD KABCO	9					
OD KABC	2					

on and Validation of Minnesota SPFs Using Ohio Data, Four-Leg Stop-Controlled (4ST) Intersections

Improved Prediction Models for Crash Types and Crash Severities

Type Crashes Pred. MAD MAP Cf* N Fitted MAD MSPE a b k N Fitted MAD MSPE KABCO 201 806.693 1.169 2.162 0.249 201 0.503 0.905 (0.118) (0.234) (0.915) 201.628 0.508 0.894 KABC 103 239.390 0.437 0.390 0.277 0.316 0.627 (0.267) (1.530) 104.274 0.270 0.316 0.627 (0.300) (1.525) 84.700 0.200 0.200 0.220 0.200 0.226 0.200 (1.525) 84.700 0.200 0.200 0.226 0.200 0.201 5.231 #	Crash	Observed	HSM		MCDE	(Calibration Factor (HSM)			Calibration Function (Srinivasan et al. 2016)									
KABCO 201 806.693 1.169 2.162 0.249 201 0.533 0.905 (0.131) 0.237 0.2739 5.357 0 KABC 103 239.390 0.430 0.390 0.430 103 0.277 0.316 0.647 6.222 0.4274 0.279 0.315 KAB 31.173 0.285 0.252 0.640 84 0.228 0.242 (0.324) (0.267) (1.530) 104.274 0.279 0.315 KAB 84 131.173 0.285 0.525 0.640 84 0.28 0.242 (0.520) (0.300) (1.525) 84.700 0.230 0.240 KAB 24 32.06 0.081 0.044 0.745 24 0.070 0.044 (1.293) (0.420) (4.727) 24.015 0.070 0.044 KABC 30 255.81 0.330 0.525 (0.317) (0.271) (0.275) 30.286 0.087 0.055 0.081	Туре	Crashes	Pred.	IVIAD	IVISPE	CF*	N Fitted	MAD	MSPE	а	b	k	N Fitted	MAD	MSPE				
KABC 201 806.693 1.169 2.162 0.249 201 0.533 0.905 (0.118) (0.234) (0.915) 201.628 0.508 0.894 KABC 103 239.390 0.437 0.390 0.430 103 0.277 0.319 (0.324) (0.267) (1.530) 104.274 0.279 0.315 KAB 84 131.173 0.285 0.525 0.640 84 0.224 (0.520) (0.304) (1.525) 84.700 0.230 0.240 KA 24 32.206 0.081 0.444 0.745 24 0.070 0.044 (1.239) 0.420 0.770 0.240 SD 30 205.831 0.330 0.258 0.146 30 0.087 0.055 (0.317) (2.767) 30.286 0.087 0.052 SD KAB 6 54.202 0.089 0.014 0.038 0.347 0.271 2.718 8.030 ⁴ KABC 0 0	КАВСО									0.277	0.739	5.357							
KABC 103 239.390 0.437 0.430 103 0.277 0.316 0.647 6.222 0.477 0.315 KAB 84 131.173 0.285 0.252 0.640 84 0.228 0.224 (0.300) (1.525) 84.700 0.230 0.230 KA 24 32.06 0.081 0.044 0.745 24 0.070 0.044 (1.233) (0.420) (4.727) 24.015 0.070 0.044 SD 30 258.31 0.330 0.258 0.146 30 0.087 0.055 (0.317) (0.177) (2.767) 30.286 0.087 0.052 SD KAB 6 54.02 0.089 0.014 0.11 6 0.018 0.009	KADCO	201	806.693	1.169	2.162	0.249	201	0.503	0.905	(0.118)	(0.234)	(0.915)	201.628	0.508	0.894				
KAB 103 239.390 0.437 0.390 0.430 103 0.277 0.319 (0.267) (1.530) 104.274 0.279 0.315 KAB 84 131.173 0.285 0.252 0.640 84 0.228 0.220 (0.300) (1.525) 84.700 0.230 0.240 KAB 30 205.831 0.330 0.258 0.146 30 0.087 0.055 (0.034 (0.177) (2.767) 30.286 0.087 0.021 SD KAB 6 54.202 0.028 0.021 (3.544) (1.204) (9.483) 11.204 0.036 0.021 SD KA 0 351.659 0.590 0.868 0.259 0.411	КАВС									0.316	0.647	6.222							
KAB 84 131.173 0.285 0.252 0.640 84 0.228 0.242 (0.520) (0.1325) 84.700 0.230 0.240 KA 24 32.206 0.081 0.044 0.745 24 0.024 (0.236" 0.607" 6.493 0.044 0.445 SD 32.206 0.081 0.330 0.258 0.146 30 0.084 0.388 3.487 0.044 SD ABRC 30 0.330 0.258 0.146 30 0.055 (0.317) (0.177) (2.767) 30.266 0.087 0.021 SD KAB 6 54.02 0.089 0.014 0.111 6 0.018 0.009 Emailed to converge SD KA 0 351.659 0.590 0.868 0.259 91 0.253 0.471 (0.307) (0.241) (3.810) 91.802 0.259 ID KAB 63 127.534 0.265 0.272 0.494 0.173 (0.2		103	239.390	0.437	0.390	0.430	103	0.277	0.319	(0.324)	(0.267)	(1.530)	104.274	0.279	0.315				
KA 131.173 0.285 0.252 0.640 84 0.288 0.242 (0.520) (0.300) (1.525) 84.700 0.230 0.230* KA 24 32.206 0.081 0.044 0.745 24 0.070 0.044 (1.293) (0.607* 6.493 0.674 0.697 KABCO 30 0.258 0.146 30 0.087 0.055 (0.177) (2.767) 30.286 0.087 0.052 SD KABC 12 31.880 0.064 0.022 0.376 12 0.036 0.021 (3.544) (1.204) (9.483) 12.204 0.036 0.021 SD KABC 12 31.880 0.064 0.022 0.376 12 0.036 0.021 (3.257) 12.04 0.036 0.021 SD KAB 6 54.202 0.028 0.014 0.111 6 0.018 0.021 (3.257) 12.04 0.036 0.259 0.458 D KA 0 </th <th>КАВ</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>0.356</th> <th>0.613</th> <th>5.231</th> <th></th> <th></th> <th></th>	КАВ									0.356	0.613	5.231							
KA 24 32.206 0.081 0.044 0.745 24 0.070 0.044 (1.293) (0.420) (4.727) 24.015 0.070 0.044 SD 205.831 0.330 0.258 0.146 30 0.087 0.055 (0.317) (0.177) (2.767) 30.286 0.087 0.055 SD KABC 12 31.880 0.064 0.022 0.376 12 0.036 0.021 (3.544) (1.203) (9.483) 12.204 0.036 0.021 SD KAB 6 54.202 0.089 0.014 0.111 6 0.018 0.009 Eatled to converge SD KA 0 351.659 0.590 0.868 0.259 91 0.253 0.471 (0.307) (0.251) (3.810) 91.802 0.259 0.458 ID KAB 63 127.534 0.265 0.272 0.494 633 0.179 0.241 (0.537) (0.244) 14.789 0.185 0.249%		84	131.173	0.285	0.252	0.640	84	0.228	0.242	(0.520)	(0.300)	(1.525)	84.700	0.230	0.240				
24 32.206 0.084 0.745 24 0.070 0.044 (1.293) (0.420) (4.727) 24.015 0.070 0.044 SD 0.084 0.388 3.487 0.084 0.388 3.487 0.014 0.0177 (2.767) 30.286 0.087 0.055 SD KABC 12 31.880 0.064 0.022 0.376 12 0.036 0.021 (3.544) (1.204) (9.483) 12.204 0.036 0.021 SD KAB 6 54.202 0.089 0.014 0.111 6 0.006 0.021 (3.544) (1.204) (9.483) 12.204 0.036 0.021 SD KAB 6 54.202 0.089 0.014 0.111 6 0.001 (0.327) (0.251) (3.810) 91.802 0.259 0.458 DKAB 6 54.202 0.256 0.272 0.494 63 0.179 0.241 (0.537) (0.251) (3.810) 91.802 0.259	КА									0.236*	0.607*	6.493							
SD KABCO 30 205.831 0.330 0.258 0.146 30 0.087 0.055 (0.317) (0.177) (2.767) 30.286 0.087 0.052 SD KABC 12 31.880 0.064 0.022 0.376 12 0.036 0.021 (3.544) (1.204) (9.483) 12.204 0.036 0.021 SD KAB 6 54.020 0.089 0.011 6 0.018 0.009 Failed to converge 50 SD KAB 0 VModel is not significant 0.251 0.352 16.108 Failed to converge 50 50.43 0.421 0.552 0.458 0.471 (0.307) (0.251) (3.810) 91.802 0.529 0.458 ID KAB 63 127.534 0.265 0.272 0.494 63 0.179 0.241 (0.537) (0.254) (4.247) 63.502 0.180 0.234 ID KAB 54 77.719 0.186 0.204 0.695 54 0.159		24	32.206	0.081	0.044	0.745	24	0.070	0.044	(1.293)	(0.420)	(4.727)	24.015	0.070	0.044				
KABCO 30 205.831 0.336 0.258 0.146 30 0.095 (0.317) (0.317) (0.177) (2.767) 30.286 0.087 0.052 SD KABC 12 31.880 0.064 0.022 0.376 12 0.036 0.021 (3.544) (1.204) (9.483) 12.204 0.036 0.021 SD KAB 6 54.202 0.089 0.014 0.111 6 0.018 0.009 Failed to converge SD KAB 0 Model is not significant 0.221 0.522 16.108 Failed to converge 0.259 0.458 ID KABC 63 127.534 0.265 0.272 0.494 63 0.179 0.241 (0.537) (0.254) (4.247) 63.502 0.180 0.234 ID KAB 54 77.719 0.186 0.294 0.651 0.021 (0.537) (0.254) (4.247) 63.502 0.180 0.234 ID KAB 54 77.719 0.186	SD									0.084	0.388	3.487							
SD KABC 12 31.88 0.064 0.022 0.376 12 0.036 0.021 (3.544) (1.204) (9.483) 12.204 0.06 0.021 SD KAB 6 54.202 0.089 0.014 0.11 6 0.009 Failed to converge 0.014 0.014 0.11 6 0.021 (3.544) (1.204) (9.483) 12.204 0.036 0.021 SD KA 0 Image: State	КАВСО	30	205.831	0.330	0.258	0.146	30	0.087	0.055	(0.317)	(0.177)	(2.767)	30.286	0.087	0.052				
12 31.880 0.064 0.022 0.376 12 0.036 0.021 (3.544) (1.204) (9.483) 12.204 0.036 0.021 SD KAB 6 54.202 0.089 0.014 0.111 6 0.018 0.009 Failed to converge 5 SD KA 0	SD KABC									10.215*	2.118	8.030*							
SD KAB 6 54,202 0.089 0.0111 6 0.018 0.009 Failed to converge SD KA 0 Model is not significant Failed to converge Failed to converge ID 351.659 0.590 0.868 0.259 91 0.253 0.471 (0.307) (0.251) (3.810) 91.802 0.259 0.458 ID KABC 63 127.534 0.265 0.272 0.494 63 0.179 0.241 (0.537) (0.254) (4.247) 63.502 0.180 0.234 ID KAB 54 77.719 0.186 0.204 0.695 54 0.154 0.198 (0.691) (0.271) (4.443) 53.848 0.154 0.193 ID KA 17 24.986 0.061 0.032 0.680 17 0.050 0.031 (1.094) (0.306) (7.736) 17.119 0.050 0.031 ID KA 17 24.986 0.061 0.032 0.680 17 0.055		12	31.880	0.064	0.022	0.376	12	0.036	0.021	(3.544)	(1.204)	(9.483)	12.204	0.036	0.021				
SD KA 0 Failed to converge ID Failed to converge ID <th colspan="5" failed="" th="" to<=""><th>SD KAB</th><th>6</th><th>54.202</th><th>0.089</th><th>0.014</th><th>0.111</th><th>6</th><th>0.018</th><th>0.009</th><th colspan="4">Failed to converge</th><th></th></th>	<th>SD KAB</th> <th>6</th> <th>54.202</th> <th>0.089</th> <th>0.014</th> <th>0.111</th> <th>6</th> <th>0.018</th> <th>0.009</th> <th colspan="4">Failed to converge</th> <th></th>					SD KAB	6	54.202	0.089	0.014	0.111	6	0.018	0.009	Failed to converge				
ID KABCO 91 351.659 0.590 0.868 0.259 91 0.253 0.471 (0.307) (0.221) (3.810) 91.802 0.259 0.458 ID KABC 63 127.534 0.265 0.272 0.494 63 0.179 0.241 (0.307) (0.224) [#] 14.789 63.502 0.180 0.234 ID KABC 63 127.534 0.265 0.272 0.494 63 0.179 0.241 (0.537) (0.249 [#]) 14.789 0.180 0.234 ID KAB 54 77.719 0.186 0.204 0.695 54 0.154 0.198 (0.271) (4.443) 53.848 0.154 0.193 ID KA 17 24.986 0.061 0.322 0.680 17 0.050 0.031 (1.094) (0.306) (7.736) 17.119 0.050 0.031 OD 9 9.129 0.145 0.036 0.100 9 0.027 0.013 (1.015) (0.503	SD KA	0			Mode	el is not s	significant					Failed to co	onverge						
KABCO 91 351.659 0.590 0.868 0.259 91 0.233 0.471 (0.307) (0.251) (3.810) 91.202 0.299 0.438 ID KABC 63 127.534 0.265 0.272 0.494 63 0.179 0.241 (0.537) (0.254) (4.247) 63.502 0.180 0.234 ID KAB 54 77.719 0.186 0.204 0.695 54 0.154 0.198 (0.691) (0.271) (4.443) 53.848 0.154 0.193 ID KA 17 24.986 0.061 0.032 0.680 17 0.050 0.031 (1.044) (0.306) (7.736) 17.119 0.050 0.031 OD 6 0.032 0.680 17 0.050 0.031 (1.043) (0.306) (7.736) 17.119 0.050 0.031 OD 6 0.036 0.100 9 0.027 0.013 (1.015) (0.503) (0.000) 2.965	ID	01	254 650	0.500	0.000	0.050	01	0.050	0 474	0.221	0.522	16.108	04.000	0.050	0 450				
ID KABC 63 127.534 0.265 0.272 0.494 63 0.179 0.241 (0.537) (0.254) (4.247) 63.502 0.180 0.234 ID KAB 54 77.719 0.186 0.204 0.695 54 0.154 0.198 (0.691) (0.271) (4.443) 53.848 0.154 0.193 ID KA 17 24.986 0.061 0.032 0.680 17 0.050 0.031 (1.094) (0.306) (7.736) 17.119 0.050 0.031 OD 6 <th< th=""><th>КАВСО</th><th>91</th><th>351.659</th><th>0.590</th><th>0.868</th><th>0.259</th><th>91</th><th>0.253</th><th>0.4/1</th><th>(0.307)</th><th>(0.251)</th><th>(3.810)</th><th>91.802</th><th>0.259</th><th>0.458</th></th<>	КАВСО	91	351.659	0.590	0.868	0.259	91	0.253	0.4/1	(0.307)	(0.251)	(3.810)	91.802	0.259	0.458				
63 127.334 0.265 0.272 0.494 63 0.179 0.241 (0.1537) (0.254) (4.247) 63.502 0.180 0.234 ID KAB 54 77.719 0.186 0.204 0.695 54 0.154 0.198 (0.691) (0.271) (4.443) 53.848 0.154 0.193 ID KA 17 24.986 0.061 0.032 0.680 17 0.050 0.031 (1.094) (0.306) (7.736) 17.119 0.050 0.031 OD KABCO 9 90.192 0.145 0.036 0.100 9 0.027 0.013 (1.015) (0.503) (0.000) 8.967 0.027 0.013 OD KABCO 9 90.192 0.145 0.036 0.100 9 0.027 0.013 (1.015) (0.503) (0.000) 8.967 0.027 0.013 OD KABC 3 19.784 0.034 0.005 0.152 3 0.009<	ID KABC	62	407 504	0.005	0 0 7 0	0.404	62	0.470	0.244	0.155	0.249*	14.789	63 503	0.400	0.004				
ID KAB 54 77.719 0.186 0.204 0.695 54 0.154 0.198 (0.691) (0.271) (4.443) 53.848 0.154 0.193 ID KA 17 24.986 0.061 0.032 0.680 17 0.050 0.031 (1.094) (0.366) (7.736) 17.119 0.050 0.031 OD KABCO 9 90.192 0.145 0.036 0.100 9 0.027 0.013 (1.015) (0.306) (7.736) 17.119 0.050 0.031 OD KABCO 9 90.192 0.145 0.036 0.100 9 0.027 0.013 (1.015) (0.306) (7.736) 17.119 0.050 0.031 OD KABCO 9 90.192 0.145 0.036 0.100 9 0.027 0.013 (1.015) (0.503) (0.000) [#] 0.027 0.013 OD 4 0.034 0.005 0.152 3 0.009 0.005 (3.357) (0.970) (0.000) 2.965 0.009 0.005 <		63	127.534	0.265	0.272	0.494	63	0.179	0.241	(0.537)	(0.254)	(4.247)	63.502	0.180	0.234				
54 77.719 0.186 0.204 0.695 54 0.194 0.198 (0.271) (4.443) 53.848 0.154 0.193 ID KA 17 24.986 0.061 0.032 0.680 17 0.050 0.031 (1.094) (0.306) (7.736) 17.119 0.050 0.031 OD KABCO 9 90.192 0.145 0.036 0.100 9 0.027 0.013 (1.094) (0.306) (7.736) 17.119 0.050 0.031 OD KABCO 9 90.192 0.145 0.036 0.100 9 0.027 0.013 (1.015) (0.000) 8.967 0.027 0.013 OD KABCO 19.784 0.034 0.005 0.152 3 0.009 0.005 (3.357) (0.970) (0.000) 2.965 0.009 0.005 OD KAB 3 5.167 0.012 0.050 0.581 3 0.009 0.005 (3.357) (0.970) (0.000) 2.965 0.009 0.005 SV KABCO 5	ID KAB	- 4	77 740	0.400	0.004	0.005	- 4	0.454	0.400	0.129	0.191"	10.052	53.040	0.454	0.402				
ID KA 17 24.986 0.061 0.032 0.680 17 0.050 0.031 (1.094) (0.306) (7.736) 17.119 0.050 0.031 OD KABCO 9 90.192 0.145 0.036 0.100 9 0.027 0.013 (1.094) (0.306) (7.736) 17.119 0.050 0.031 OD KABCO 9 0.912 0.145 0.036 0.100 9 0.027 0.013 (1.015) (0.503) (0.000) 8.967 0.027 0.013 OD KABCO 3 19.784 0.034 0.005 0.152 3 0.009 0.005 (3.357) (0.970) (0.000) 2.965 0.009 0.005 OD KAB 3 5.167 0.012 0.005 0.581 3 0.009 0.005 (3.357) (0.970) (0.000) 2.965 0.009 0.005 SV Model Nodel Ison tsignificant Is		54	//./19	0.186	0.204	0.695	54	0.154	0.198	(0.691)	(0.271)	(4.443)	53.848	0.154	0.193				
17 24.986 0.061 0.032 0.680 17 0.050 0.031 (1.094) (0.306) (7.736) 17.119 0.050 0.031 OD KABCO 9 90.192 0.145 0.036 0.100 9 0.027 0.013 (1.015) (0.503) (0.000)# 5.967 0.027 0.013 OD KABCO 3 19.784 0.034 0.005 0.152 3 0.009 0.005 (3.357) (0.970) (0.000)# 5.965 0.009 0.005 OD KAB 3 5.167 0.012 0.005 0.581 3 0.009 0.005 (3.357) (0.970) (0.000)# 5.965 0.009 0.005 OD KAB 3 5.167 0.012 0.005 0.581 3 0.009 0.005 Failed to converge 5.96 0.009 0.005 5.96 0.009 0.170 0.634# 3.252 5.012 0.102 0.170 0.634# 3.252 0.102 0.102 0.259# 1.021# 5.015# 54.027 0.152 0.102	ID KA	47	24.000	0.001	0.022	0.000	17	0.050	0.024	0.093	0.362"	9.086	17 1 10	0.050	0.024				
KABCO 9 90.192 0.145 0.036 0.100 9 0.027 0.013 (1.015) (0.503) (0.000) 8.967 0.027 0.013 OD Image: Constraint of the conster of th	0.0	1/	24.986	0.061	0.032	0.680	1/	0.050	0.031	(1.094)	(0.306)	(7.736)	17.119	0.050	0.031				
KABCO 9 90.192 0.143 0.036 0.100 9 0.027 0.013 (1.013) (0.303) (0.000) 8.967 0.027 0.013 OD KABC 3 19.784 0.034 0.005 0.152 3 0.009 0.005 (3.357) (0.970) (0.000) 2.965 0.009 0.005 OD KAB 3 5.167 0.012 0.005 0.581 3 0.009 0.005 (3.357) (0.970) (0.000) 2.965 0.009 0.005 OD KA 2 Model is not significant Model is not significant Vision of the second of the		0	00 102	0.145	0.026	0 100	0	0.027	0.012	0.055		(0.000°)	8 067	0.027	0.012				
OD NABC 3 19.784 0.034 0.005 0.152 3 0.009 0.005 (3.357) (0.970) (0.000) 2.965 0.009 0.005 OD KAB 3 5.167 0.012 0.005 0.581 3 0.009 0.005 (3.357) (0.970) (0.000) 2.965 0.009 0.005 OD KA 2 Model is not significant Model is not significant Failed to converge 50 54 211.523 0.356 0.166 0.255 54 0.152 0.102 (0.621) (0.526) (1.642) 54.027 0.152 0.102 SV KABC 15 60.695 0.110 0.030 0.247 15 0.044 0.025 (2.488) (1.047) (6.305) 14.962 0.044 0.025 SV KAB 14 34.180 0.071 0.025 0.410 14 0.041 0.024 (3.368) (1.149) (7.100) 14.042 0.041 0.024 SV KAB 14 34.180 0.071 0.025 0.410 14 0.024 3.368 </th <th>KABCU</th> <th>9</th> <th>90.192</th> <th>0.145</th> <th>0.030</th> <th>0.100</th> <th>9</th> <th>0.027</th> <th>0.013</th> <th>(1.015)</th> <th>(0.503)</th> <th>(0.000)</th> <th>8.907</th> <th>0.027</th> <th>0.013</th>	KABCU	9	90.192	0.145	0.030	0.100	9	0.027	0.013	(1.015)	(0.503)	(0.000)	8.907	0.027	0.013				
KABC 3 19.784 0.054 0.005 0.132 3 0.009 0.005 (0.370) (0.000) 2.963 0.009 0.005 OD KAB 3 5.167 0.012 0.005 0.581 3 0.009 0.005 Failed to converge OD KA 2 Model is not significant Failed to converge 5000000000000000000000000000000000000		2	10 794	0.024	0.005	0 1 5 2	2	0.000	0.005	(2 257)	0.701	0.000	2.065	0.000	0.005				
OD KAB S S.167 0.012 0.003 0.361 S 0.009 0.005 0.012 0.005 0.012<		2	19.704 E 167	0.034	0.005	0.152	2	0.009	0.005	(5.557)	(0.970)	(0.000) Eailed to co	2.905	0.009	0.005				
SV SV 0.152 0.170 0.634# 3.252 0.152 0.102 SV KABCO 54 211.523 0.356 0.166 0.255 54 0.152 0.102 (0.621) (0.526) (1.642) 54.027 0.152 0.102 SV KABC 15 60.695 0.110 0.030 0.247 15 0.044 0.025 (2.488) (1.047) (6.305) 14.962 0.044 0.025 SV KAB 14 34.180 0.071 0.025 0.410 14 0.041 0.024 (3.368) (1.149) (7.100) 14.042 0.041 0.024 SV KA 4 Model is not significant Model is not significant Eailed to converge Eailed to converge Eailed to converge		2 2	5.107	0.012	0.005	0.561	J	0.009	0.005			Failed to co	nverge						
SV ABCO 54 211.523 0.356 0.166 0.255 54 0.152 0.102 (0.621) (0.526) (1.642) 54.027 0.152 0.102 SV KABC 15 60.695 0.110 0.030 0.247 15 0.044 0.025 (2.488) (1.047) (6.305) 14.962 0.044 0.025 SV KAB 14 34.180 0.071 0.025 0.410 14 0.041 0.024 (3.368) (1.149) (7.100) 14.042 0.041 0.024 SV KA 4 4 4 4 4 4 4 4 50.124 57.42#		2			IVIOUE					0.170	0.624#		liverge						
KABCO 34 211.323 0.336 0.106 0.233 34 0.132 0.102 (0.521) (0.326) (1.642) 34.027 0.132 0.102 SV KABC 15 60.695 0.110 0.030 0.247 15 0.044 0.025 (2.488) (1.047) (6.305) 14.962 0.044 0.025 SV KAB 14 34.180 0.071 0.025 0.410 14 0.041 0.024 (3.368) (1.149) (7.100) 14.042 0.041 0.024	SV	E 4	211 522	0.256	0 166	0.255	E 4	0.150	0 102	0.170	0.034° (0.526)	3.252	E4 027	0.150	0 102				
SV KABC 15 60.695 0.110 0.030 0.247 15 0.044 0.025 (2.488) (1.047) (6.305) 14.962 0.044 0.025 SV KAB 14 34.180 0.071 0.025 0.410 14 0.041 0.024 (3.368) (1.149) (7.100) 14.042 0.041 0.024 SV KA 4 Model is not significant SV KA SV	KABCO	54	211.525	0.550	0.100	0.255	54	0.152	0.102	0.021)	(0.520)	(1.042) E 015#	54.027	0.152	0.102				
SV KAB 14 34.180 0.071 0.025 0.410 14 0.041 0.024 (1.047) (0.303) 14.302 0.044 0.023 SV KAB 14 34.180 0.071 0.025 0.410 14 0.024 (3.368) (1.149) (7.100) 14.042 0.024 SV KA A Model is not significant	SV KABC	15	60 605	0 1 1 0	0.020	0.247	15	0.044	0.025	0.259	1.021	(6 205)	14 062	0.044	0.025				
SV KAB 14 34.180 0.071 0.025 0.410 14 0.041 0.024 (3.368) (1.149) (7.100) 14.042 0.041 0.024 SV KA A Model is not significant Model is not significant Earlied to converge Earlied to converge Earlied to converge		1.5	00.095	0.110	0.030	0.247	1.7	0.044	0.023	(2.400)	(1.047)	[0.303] 5 740#	14.902	0.044	0.025				
SV KA A Model is not significant Earled to converge	SV KAB	14	3/ 180	0.071	0.025	0 / 10	1/	0.041	0.024	(3 368)	1.545	5.742 (7.100)	1/ 0/2	0.0/1	0.024				
	SV KA	4	34.100	0.071	Mode	l is not a	significant	0.041	0.024	(3.308)	(1.14)	Failed to co	nverge	0.041	0.024				

* CF = Calibration Factor; [#]Not significant at 90th percentile confidence interval.

		Calibrati	on Function (Sri	nivasan et al	. 2016)
MSPE	а	b	k	N Fitted	MAD
	5.746	0.376	0.087		
9.039	(0.105)	(0.117)	(0.084)	135.561	2.18
	4.162	0.730#	0.355		
2.464	(0.778)	(0.497)	(0.297)	33.799	0.98
	1.287#	0.520#	2.004		
0.690	(0.917)	(0.407)	(2.006)	10.550	0.63
0.038			Failed to co	nverge	
	4.223	0.310	0.156		
5.751	(0.195)	(0.103)	(0.169)	67.746	1.57
0.678			Failed to co	nverge	
0.031			Failed to co	nverge	
			Failed to co	nverge	
	1.253#	0.052#	0.000		
1.608	(0.361)	(0.318)	(0.004)	29.783	0.98
0.352			Failed to co	nverge	
0.107			Failed to co	nverge	
			Failed to co	nverge	
	2.082	0.644	0.426		
1 010		(0,220)	(0,004)	20 746	0 06

MSPE

7.967

2.509

MAD

2.189

0.980

Table 3-22: Calibration and Validation of	OH SPFs using MN Data (4SG)
---	-----------------------------

MSPE

28.48

3.994

CF

5.174

6.204

MAD

4.468

1.247

0.594 11 3.491 0.489 0.891 3.151 0. 10.550 0.631 0.781 11 0. 1 0.082 0.859 1 KA 1.164 0.038 0.076 o converge SD 68 9.944 1.897 5 1.578 3.780 2.401 9.933 6.838 68 67.746 KABCO SD KABC 12 1.407 0.498 1.038 8.532 12 0.634 0. o converge 0. 0.031 0.981 SD KAB 1 1.019 0.069 1 0.068 o converge 0 SD KA Model not significant o converge **ID KABCO** 33 2.093 3.090 0.988 10.678 1.160 33 1.108 1 29.783 1.278 ID KABC 9 1.073 0.377 0.415 8.384 9 0.505 0. o converge 0. ID KAB 3 1.780 0.171 0.108 1.685 3 0.207 o converge Model not significant ID KA 0 o converge OD КАВСО 21 0.899 0.830 1.493 3.161 21 0.829 1.018 20.746 0.860 1.072 (0.502) (0.336) (0.604)9 Model not significant OD KABC Failed to converge Model not significant OD KAB 4 Failed to converge OD KA 1 Model not significant Failed to converge SV 6.612# 1.505# 0.013 КАВСО 14 4.723 0.574 0.754 2.964 14 0.601 0.580 (1.529)(0.960)(0.512)14.005 0.575 0.564 4 0.650 0.228 6.151 4 Failed to converge SV KABC 0.178 0.271 0.200 3 0.192 Failed to converge SV KAB 0.415 0.131 7.228 3 0.202 0.162 0 Failed to converge Model not significant SV KA

Calibration Factor (HSM)

MAD

2.384

0.945

N Fitted

136

34

^{*} CF = Calibration Factor; [#] Not significant at 90th percentile confidence interval.

Copyright National Academy of Sciences. All rights reserved

Observed

Crashes

136

34

HSM

Pred.

26.288

5.480

4 MODELS FOR MULTILANE RURAL HIGHWAYS

4.1 ROADWAY SEGMENTS

4.1.1 Estimation and Validation Data

The data we used for estimation of segment SPFs were collected from Texas (2009–11) and California (2010–11), for rural undivided multilane highway segments and rural divided multilane highway segments, respectively. Since not all the base conditions in the HSM were available, we slightly modified the base conditions and conducted tests to check whether the modified factors were statistically significant in the SPFs. Data used for validation were from Texas (2012) for undivided segments and Illinois (2009–10) and also Washington State (2009–11) for divided segments. Although data were available from North Carolina and Ohio for undivided segments, the samples were limited for SPF development and validation. For divided segments, we used the California data for SPF development because the range of AADTs in California is larger than in Illinois and Washington.

4.1.1.1 Undivided Segments

Not all the base conditions in the current HSM are available in both training (Table 4-1) and validation data. Also, some base conditions are rare in the dataset, such as segments with six-foot shoulder widths.

Base Condition	HSM Criteria	Texas
Lane width	12 feet	YES
Shoulder width	6 feet	YES
Shoulder type	Paved	YES
Side slopes	1V:7H or flatter	NO
Lighting	None	NO
Automated speed enforcement	None	YES

Table 4-1: HSM Base Conditions and Data Availability, Four-Lane Undivided (4U) Segments

In the training data, only 48 divided segments have twelve-foot lanes, six-foot paved shoulders, and no automated speed enforcement. Since estimating all crash types with 48 segments was not possible, we slightly modified the base conditions, changing the shoulder width in the base condition definition from "six feet" to "six feet or wider." This increased the sample size in the training dataset from 48 to 401, as shown in Table 4-2. Table 4-3 and Table 4 4 present descriptive statistics for, respectively, base condition SPFs and validation data for undivided segments.

Condition	Lane width	Shoulder width	Shoulder type	Auto-speed enforcement	Texas
Base condition	12.ft.	6.ft.	paved	not present	48
Modified condition	12.ft.	6.ft. or wider	paved	not present	401

Table 4-2: Sample Size by Conditions, Four-Lane Undivided (4U) Segments

Table 4-3: Descriptive Statistics for Base Condition SPFs, Four-Lane Undivided (4U) Segments

Texas (N = 401, 176.925 mi)	No. of Crashes	Mean	S.D.	Min	Max
Segment length (ft)	-	0.441	0.626	0.1	5.226
AADT (veh/day)	-	7,193	5,108	250	21,667
Lane width (ft)	-	12	0	12	12
Shoulder width (ft)	-	8.688	1.812	6	17
КАВСО	738	1.840	4.952	0	61
КАВС	288	0.718	1.920	0	20
КАВ	158	0.394	1.111	0	12
КА	56	0.140	0.510	0	5
SD KABCO	287	0.716	2.652	0	35
SD KABC	102	0.254	0.875	0	9
SD KAB	43	0.107	0.419	0	3
SD KA	9	0.022	0.179	0	2
ID KABCO	147	0.367	1.184	0	11
ID KABC	58	0.145	0.569	0	6
ID KAB	32	0.080	0.344	0	3
ID KA	9	0.022	0.179	0	2
OD KABCO	83	0.207	0.889	0	12
OD KABC	40	0.100	0.447	0	5
OD KAB	29	0.072	0.342	0	4
OD KA	22	0.055	0.286	0	3
SV KABCO	192	0.479	1.315	0	15
SV KABC	78	0.195	0.646	0	9
SV KAB	50	0.125	0.529	0	8
SV KA	16	0.040	0.220	0	2

Texas	No. of	Mean	S.D.	Min	Max
(N = 402, 170.531 mi)	Crashes				
Segment length (ft)	-	0.424	0.596	0.100	5.226
AADT (veh/day)	-	7,022	4,844	90	23,000
Lane width (ft)	-	12	0	12	12
Shoulder width (ft)	-	8.662	1.814	6	17
КАВСО	195	0.485	1.399	0	18
КАВС	66	0.164	0.581	0	7
КАВ	38	0.095	0.362	0	4
КА	14	0.035	0.184	0	1
SD KABCO	78	0.194	0.739	0	10
SD KABC	24	0.06	0.285	0	3
SD KAB	11	0.027	0.178	0	2
SD KA	3	0.007	0.086	0	1
ID KABCO	30	0.075	0.345	0	4
ID KABC	3	0.007	0.086	0	1
ID KAB	3	0.007	0.086	0	1
ID KA	0	0	0	0	0
OD KABCO	15	0.037	0.266	0	4
OD KABC	11	0.027	0.191	0	2
OD KAB	7	0.017	0.131	0	1
OD KA	3	0.007	0.086	0	1
SV KABCO	72	0.179	0.614	0	7
SV KABC	28	0.07	0.339	0	4
SV KAB	17	0.042	0.236	0	3
SV KA	8	0.02	0.14	0	1

Table 4-4: Descriptive Statistics for Base Condition Validation Data, Four-Lane Undivided (4U) Segments

4.1.1.2 Divided Segments

Similarly, in the base condition SPFs for divided roadway segments, some base conditions in the current HSM are not available for California, which is the state used for SPF development (see Table 4-5).

Table 4-5: HSM Base Conditions and Data Availability, F	Four-Lane Divided (4D) Segments
---	---------------------	--------------

Base Condition	HSM Criteria	California
Lane width	12 ft	Х
Right shoulder width	8 ft	Х
Median width	30 ft	Х
Lighting	none	
Automated speed enforcement	none	Х

Moreover, some base conditions occur infrequently in the dataset, such as segments with median widths of 30 feet (0.88 percent). To increase the sample size, we changed the median width in the base condition from "30 feet" to "30 feet or wider." This increased the sample size in the dataset from 0 to 138, as shown

in Table 4 6. Table 4-7 shows descriptive statistics for base condition SPFs for divided segments. Also, descriptive statistics produced from the validation data for the divided segments are presented in Table 4-8 and Table 4-9. We chose California's data for SPF estimation because California has the largest range of AADTs, as shown in Table 4-7; Illinois and Washington data were chosen for validation.

Condition	Lane Width	Shoulder Width	Median Width	Auto-Speed Enforcement	California
Base condition	12 feet	8 feet	30 feet	Not present	0
Modified condition	12 feet	8 feet	30 feet or wider	Not present	138

Table 4-6: Sample Size by Condition, Four-Lane Divided (4D) Segments

Table 4-7: Descriptive Statistics for Base Condition SPFs, Four-Lane Divided (4D) Segments

California	No. of	Mean	S.D.	Min	Max
(N = 138, 73.366 mi)	Crashes				
Segment length (mi)	-	0.532	0.585	0.104	3.65
AADT (veh/day)	-	16,212	10,083	2,325	66,504
Lane width (ft)	-	12	0	12	12
Shoulder width (ft)	-	9.123	0.734	8	11
Median width (ft)	-	68.384	18.904	30	99
КАВСО	263	1.906	4.159	0	30
КАВС	93	0.674	1.476	0	11
КАВ	47	0.341	0.759	0	5
КА	9	0.065	0.248	0	1
SD KABCO	115	0.833	2.536	0	22
SD KABC	30	0.217	0.835	0	7
SD KAB	10	0.072	0.334	0	2
SD KA	0	0	0	0	0
ID KABCO	1	0.007	0.085	0	1
ID KABC	0	0	0	0	0
ID KAB	0	0	0	0	0
ID KA	0	0	0	0	0
OD KABCO	7	0.051	0.251	0	2
OD KABC	5	0.036	0.223	0	2
OD KAB	3	0.022	0.146	0	1
OD KA	3	0.022	0.146	0	1
SV KABCO	136	0.986	2.007	0	19
SV KABC	57	0.413	0.843	0	6
SV KAB	33	0.239	0.561	0	3
SV KA	6	0.043	0.205	0	1

lllinois (N = 592, 145.500 mi)	No. of Crashes	Mean	S.D.	Min	Max
Segment length (mi)	-	0.246	0.162	0.100	1.410
AADT (veh/day)	_	8,198	4,376	1,050	27,750
Lane width (ft)	-	12	0	12	12
Shoulder width (ft)	-	10.856	1.239	8	14
Median width (ft)	-	48.785	11.105	30	88
КАВСО	170	0.287	0.675	0	6
КАВС	70	0.118	0.376	0	3
КАВ	59	0.1	0.342	0	3
КА	21	0.035	0.185	0	1
SD KABCO	47	0.079	0.317	0	3
SD KABC	20	0.034	0.199	0	2
SD KAB	18	0.03	0.191	0	2
SD KA	8	0.014	0.116	0	1
ID KABCO	0	0	0	0	0
ID KABC	0	0	0	0	0
ID KAB	0	0	0	0	0
ID KA	0	0	0	0	0
OD KABCO	5	0.008	0.092	0	1
OD KABC	4	0.007	0.082	0	1
OD KAB	4	0.007	0.082	0	1
OD KA	2	0.003	0.058	0	1
SV KABCO	116	0.196	0.513	0	4
SV KABC	44	0.074	0.299	0	2
SV KAB	37	0.063	0.262	0	2
SV KA	11	0.019	0.135	0	1

Table 4-8: Descriptive Statistics for Base Condition Validation Data, Four-Lane Divided (4D)Segments - Illinois

Washington (N = 214, 91.727 mi)	No. of Crashes	Mean	S.D.	Min	Max
Segment length (mi)	-	0.429	0.439	0.103	2.373
AADT (veh/day)	-	15,660	8221	3947	42,310
Lane width (ft)	-	12	0	12	12
Shoulder width (ft)	-	9.853	0.525	8	10.5
Median width (ft)	-	59.051	22.833	35	180
КАВСО	721	3.369	4.159	0	24
КАВС	179	0.836	1.288	0	7
КАВ	116	0.542	0.991	0	6
КА	21	0.098	0.342	0	2
SD KABCO	131	0.612	1.212	0	7
SD KABC	36	0.168	0.454	0	2
SD KAB	20	0.093	0.337	0	2
SD KA	3	0.014	0.118	0	1
ID KABCO	20	0.093	0.4	0	3
ID KABC	11	0.051	0.278	0	2
ID KAB	9	0.042	0.262	0	2
ID KA	2	0.009	0.096	0	1
OD KABCO	8	0.037	0.234	0	2
OD KABC	4	0.019	0.136	0	1
OD KAB	2	0.009	0.096	0	1
OD KA	1	0.005	0.068	0	1
SV KABCO	554	2.589	3.329	0	22
SV KABC	126	0.589	0.983	0	6
SV KAB	84	0.393	0.76	0	5
SV KA	15	0.07	0.306	0	2

Table 4-9: Descriptive Statistics for Base Condition Validation Data, Four-Lane Divided (4D) Segments - Washington

4.1.2 Estimated Models

Base condition SPFs for undivided segments are displayed in Table 4-10. The coefficients of the traffic volumes range from 0.518 to 1.711, indicating that the relationship between crash occurrences and traffic volume is not necessarily linear. Note that for same-direction, intersecting-direction, and single-vehicle KA crashes, the volume coefficients of the corresponding SPF are not statistically significant at a confidence interval of 90 percent. Such SPFs should be used with care. Also, for the SPF of same-direction KAB crashes, the standard error of the overdispersion parameter function, *c*, is not estimated. Thus, this SPF should also be used with care. Furthermore, the MADs are reasonably small.

Base condition SPFs for divided segments are displayed in Table 4-11. The lowest and highest traffic volume coefficients are -0.176 and 1.730, respectively. They indicate the nonlinear relationship between crashes and traffic volume. The coefficients of the intersecting-direction KABCO crash SPF are all statistically insignificant at all levels of significance because of their extremely large standard errors. Thus, it is not recommended to apply the SPF for practical purposes without care. The SPFs of the remaining crash categories of intersecting-direction crashes and same-direction KA crashes cannot be estimated because there are no observed crashes to model. Finally, the SPF MADs are small.

Crash Type Texas (N = 401, 176.925 mi)	Severity	bo	b 1	с	–2LL	AIC	MAD
	КАВСО	-9.129 (1.001)	1.055 (0.112)	0.476 (0.130)	1,199.4	1,205. 4	1.677
Tatal	КАВС	-9.6520 (1.2192)	1.0088 (0.1350)	0.611 (0.221)	731.6	737.6	0.711
TOTAL	КАВ	-9.704 (1.447)	0.950 (0.160)	0.783 (0.390)	509.7	515.7	0.453
	КА	-9.799 (2.335)	0.847 (0.259)	-0.2157 [#] (0.5427)	256.1	262.1	0.199
	КАВСО	-13.541 (1.616)	1.431 (0.178)	0.0327 [#] (0.183)	709.0	715.0	0.813
Same direction	КАВС	-16.6504 (2.2606)	1.654 (0.245)	0.365 [#] (0.365)	374.7	380.7	0.313
	КАВ	-15.173 (2.711)	1.404 (0.292)	11.832 [#] (.)	229.2	235.2	0.163
	КА	-12.032 (6.410)	0.895 [#] (0.713)	-1.983 (1.101)	65.6	71.6	0.042
	КАВСО	-10.209 (2.145)	1.000 (0.241)	-0.825 (0.211)	546.1	552.1	0.559
Intersecting direction	КАВС	-10.944 (2.913)	0.978 (0.325)	-1.199 (0.331)	301.9	307.9	0.243
	КАВ	-11.340 (3.227)	0.955 (0.356)	-0.764 [#] (0.567)	197.2	203.2	0.135
	КА	-10.025 (5.702)	0.671 [#] (0.637)	-2.249 (0.921)	76.6	82.6	0.043
	КАВСО	-15.344 (2.912)	1.495 (0.321)	-0.923 (0.304)	307.6	313.6	0.290
Opposite direction	КАВС	-16.518 (3.174)	1.540 (0.343)	0.365 [#] (0.824)	190.0	196.0	0.147
	КАВ	-18.421 (3.572)	1.711 (0.382)	13.203 [#] (224.650)	142.7	148.7	0.108
	КА	-16.573 (3.998)	1.482 (0.431)	0.885 [#] (2.254)	124.0	130.0	0.089
	КАВСО	-7.127 (1.196)	0.688 (0.133)	1.018 (0.379)	598.3	604.3	0.532
Single vehicle	КАВС	-6.738 (1.558)	0.545 (0.173)	13.202 [#] (121.940)	325.5	331.5	0.253
	КАВ	-6.941 (2.044)	0.518 (0.228)	0.476 [#] (0.879)	243.1	249.1	0.184
	КА	-6.931 (3.378)	0.390 [#] (0.379)	-0.255 [#] (1.421)	113.2	119.2	0.071

Table 4-10: Base Condition SPFs, Four-Lane Undivided (4U) Segments

* Moore-Penrose inverse matrix used.

[#] Not significant at 90th percentile confidence interval.

Crash Type California (N = 138, 73.366 mi)	Severity	bo	b 1	с	–2LL	AIC	MAD		
	КАВСО	-9.644 (1.519)	1.050 (0.156)	0.669 (0.296)	441.2	447.2	1.384		
Total	КАВС	-10.817 (1.999)	1.064 (0.203)	1.023 (0.851)	249.2	255.2	0.641		
Total	КАВ	-10.69 (2.456)	0.983 (0.248)	2.090 (3.255)	173.6	179.6	0.402		
	КА	-7.690 (5.401)	0.508 (0.554)	11.238 (289.120)	57.2	63.2	0.108		
	КАВСО	-14.701 (2.920)	1.479 (0.299)	-0.473 (0.210)	282.9	288.9	0.957		
Same direction	КАВС	-18.512 (6.115)	1.730 (0.625)	-1.620 (0.521)	121.8	127.8	0.351		
	КАВ	-14.914 (9.572)	1.261 (0.983)	-2.190 (0.883)	61.3	67.3	0.130		
	КА		0 Observed	Crashes: Faile	d to Conv	verge			
Intersecting direction	КАВСО	-192.600 [#] (1360.500)	17.207 [#] (122.530)	9.094 [#] (316.050)	2.200	0 8.2 0.00			
	КАВС		0 Observed	Crashes: Faile	d to Conv	verge			
	КАВ	0 Observed Crashes: Failed to Converge							
	КА		0 Observed	Crashes: Faile	d to Conv	verge			
	КАВСО	-17.478 (5.829)	1.470 (0.575)	9.638 [#] (438.060)	36.7	42.7	0.074		
Opposite direction	КАВС	-17.132 (7.121)	1.403 (0.707)	1.553 [#] (42.172)	29.8	35.8	0.054		
	КАВ	-20.211 (8.927)	1.656 (0.874)	9.871 [#] (396.870)	20.0	26.0	0.031		
	КА	-20.211 (8.927)	1.656 (0.874)	9.871 [#] (396.870)	20.0	26.0	0.031		
	КАВСО	-7.990 (1.580)	0.816 (0.161)	1.262 (0.715)	329.4	335.4	0.863		
Single vehicle	КАВС	-9.473 (2.093)	0.879 (0.212)	10.025 [#] (586.580)	191.6	197.6	0.424		
Single vehicle	КАВ	-10.952 (2.925)	0.973 (0.296)	1.422 [#] (2.264)	144.2	150.2	0.317		
	КА	-1.524 (6.838)	-0.176 (0.719)	9.978 [#] (913.790)	46.1	52.1	0.081		

Table 4-11: Base Condition SPFs, Four-Lane Divided (4D) Segments

* Moore-Penrose inverse matrix used.

[#]Not significant at 90th percentile confidence interval.

4.1.3 Validation of Models

Calibration and validation of the SPFs of rural multilane undivided and divided segments are presented in Table 4-12 through Table 4-14. The Texas 2012 data are used for calibration and validation of undivided segment SPFs and the Illinois and Washington data for divided segment SPFs. The calibration factors obtained using the HSM method are less than 1, except for SV SPFs. Use of the calibration function (Srinivasan et al. 2016) improves model fit better than the HSM calibration technique in some cases, as indicated by the MADs and MSPEs. Due to the lack of samples, the same-direction KA, intersectingdirection KAB, intersecting-direction KA, and opposite-direction KA crash SPFs cannot be calibrated using the calibration function.

Crash	Observed	нѕм			Calibration Factor (HSM)			Ca	ibration F	unction (Srinivasan et al. 2016)				
Туре	Crashes	Pred.	MAD	MSPE	CF⁺	N Fitted	MAD	MSPE	а	b	k	N Fitted	MAD	MSPE
КАВСО	195	233.28	0.583	1.371	0.836	195	0.542	1.320	0.825 (0.089)	0.838 (0.084)	1.074 (0.289)	188.96	0.554	1.362
КАВС	66	90.49	0.249	0.201	0.729	66	0.215	0.206	0.670 (0.120)	0.936 (0.118)	0.437 [#] (0.392)	63.76	0.217	0.217
КАВ	38	50.04	0.154	0.086	0.759	38	0.140	0.088	0.741 (0.183)	0.988 (0.137)	8.95×10 ^{-7#} (0.013)	37.71	0.140	0.089
КА	14	17.90	0.069	0.032	0.782	14	0.061	0.031	0.447 (0.116)	0.781 (0.224)	0 [#] (0.007)	14.00	0.063	0.031
SD KABCO	78	89.80	0.290	0.452	0.869	78	0.274	0.443	0.751 (0.161)	0.839 (0.118)	1.853 (0.721)	75.81	0.278	0.442
SD KABC	24	31.89	0.105	0.061	0.753	24	0.092	0.061	0.776 (0.265)	1.021 (0.172)	0.047 [#] (0.525)	23.95	0.092	0.061
SD KAB	11	13.71	0.054	0.028	0.803	11	0.048	0.028	1.065 [#] (0.720)	1.117 (0.259)	0.058 [#] (1.125)	11.00	0.048	0.028
SD KA	3	2.96	0.015	0.007	1.015	3	0.015	0.007			Failed to Con	verge		
ID KABCO	30	48.02	0.170	0.135	0.625	30	0.134	0.118	0.396 (0.172)	0.710 (0.183)	3.074 (1.880)	30.08	0.136	0.113
ID KABC	3	18.78	0.053	0.014	0.160	3	0.015	0.007	0.056 (0.079)	0.596 (0.468)	0 (0)	3.00	0.015	0.007
ID KAB	3	10.25	0.032	0.009	0.293	3	0.015	0.007			Failed to Con	verge		
ID KA	0	2.90	0.007	1.834×10 ⁻⁴	0	0	0	0			Failed to Con	verge		
OD KABCO	15	26.73	0.086	0.067	0.561	15	0.065	0.064	0.173 [#] (0.117)	0.495 (0.208)	10.690 [#] (7.997)	14.14	0.068	0.068
OD KABC	11	12.63	0.052	0.032	0.871	11	0.049	0.032	0.238 [#] (0.202)	0.570 (0.233)	5.241 [#] (6.143)	10.40	0.050	0.035
OD KAB	7	9.18	0.036	0.016	0.763	7	0.032	0.016	0.215 [#] (0.213)	0.596 (0.266)	0 [#] (0.004)	7.00	0.033	0.016
OD KA	3	6.98	0.025	0.009	0.430	3	0.015	0.008			Failed to Con	verge		
SV KABCO	72	61.33	0.247	0.273	1.174	72	0.259	0.266	1.153 (0.301)	0.997 (0.136)	1.299 (0.646)	70.98	0.258	0.266
SV KABC	28	25.01	0.110	0.094	1.119	28	0.115	0.093	1.180 (0.593)	1.035 (0.194)	1.526 [#] (1.355)	27.40	0.113	0.093
SV KAB	17	15.98	0.073	0.047	1.064	17	0.075	0.047	1.231 [#] (0.789)	1.062 (0.227)	0.386 [#] (1.085)	16.76	0.074	0.046
SV KA	8	5.12	0.031	0.018	1.561	8	0.036	0.018	2.672 (1.550)	1.146 (0.314)	0 (0.014)	8.00	0.036	0.018

Table 4-12: Calibration of the Texas (2009–11) Safety Performance Functions Using the Texas (2012) Data, Multilane Undivided Segments Base Conditions

Improved Prediction Models for Crash Types and Crash Severities

⁺CF = Calibration Factor; [#] Not significant at 90th percentile confidence interval. ^{*}Moore-Penrose inverse matrix used.

Crashes MAD MSPE CF NL MAD MAD MAD <thm< th=""><th>Crach</th><th>Observed</th><th>ЦСМ</th><th></th><th></th><th colspan="3">Calibration Factor (HSM)</th><th>C</th><th>alibration</th><th colspan="4">alibration Function (Srinivasan et al. 2016)</th></thm<>	Crach	Observed	ЦСМ			Calibration Factor (HSM)			C	alibration	alibration Function (Srinivasan et al. 2016)				
KABCO 170 233.745 0.463 0.406 0.777 1.046 0.978 1.049 0.411 0.397 KABC 770 82.320 0.213 0.130 0.560 0.70 0.199 0.130 0.775 0.034 0.624* 69.615 0.19 0.13 KAB 559 44.393 0.153 0.100 1.228 0.55 0.171 0.107 1.638 1.092 0.056 8.761 0.109 0.107 KAB 2.295* 1.085 4.379 2.895* 0.665 4.379 2.895* 0.665 4.379 2.895* 0.665 4.379 2.895* 0.665 4.379 2.895* 0.665 4.379 2.895* 0.665 4.379 2.895* 0.665 0.33 2.895* 1.085 4.379 2.895* 0.665 0.33 0.665* 4.379 2.895* 0.665 0.33 0.666 0.33 0.665* 4.59* 0.665 0.33 0.665 1.535* 0.105	Туре	Crashes	Pred.	MAD	MSPE	CF⁺	N Fitted	MAD	MSPE	а	b	k	N Fitted	MAD	MSPE
KABC 70 82.320 0.213 0.130 0.850 70 0.199 0.130 0.755 0.934 (0.624" 69.615 0.199 0.130 KAB 59 44.393 0.153 0.109 1.329 59 0.171 0.107 1.628 1.002 0.370" 58.761 0.169 0.100 KA 21 12.280 0.554 0.091 0.624 47 0.107 1.638 1.002 0.0370" 58.761 0.169 0.100 KABC 21 12.280 0.554 0.091 0.624 47 0.130 0.607 0.033 2.795" 1.085 4.379 0.058 0.058 0.067 0.033 0.504" 1.233 0.569" 4.673" 0.058 0.0	КАВСО	170	233.745	0.463	0.406	0.727	170	0.413	0.390	0.747 (0.102)	1.046 (0.131)	0.978 (0.343)	169.46	0.411	0.390
KAB $$	КАВС	70	82.320	0.213	0.130	0.850	70	0.199	0.130	0.755 (0.252)	0.934 (0.174)	0.624 [#] (0.592)	69.615	0.199	0.130
KA 21 12.280 0.054 0.034 1.710 21 0.057 0.033 2.295* (2.462) 1.085 (2.462) 4.379 (0.093) 20.589 0.066 0.033 SD KABCO 4.47 75.301 0.170 0.091 0.624 47 0.136 0.089 0.093 1.0133 0.0662 46.748 0.132 0.063 SD KABC 2.00 16.978 0.058 0.038 1.178 2.0 0.03 0.037 0.999* 0.951 1.535* 19.739 0.063 0.037 SD KAB 18 8.248 0.043 0.035 2.128 1.034* 0.034 6.391* 1.282 1.504* 1.780 0.056 0.033 SD KAB 8 Failettor= Import Import Import Failettor Import	КАВ	59	44.393	0.153	0.109	1.329	59	0.171	0.107	1.638 (0.763)	1.092 (0.192)	0.370 [#] (0.566)	58.761	0.169	0.106
SD KABC 47 75.301 0.170 0.070 0.624 47 0.136 0.084 0.123 0.569 [±] 46.748 0.132 0.081 SD KABC 200 16.978 0.058 0.038 1.178 20 0.063 0.037 0.093 (0.260) 1.535 [±] 19.78 0.063 0.037 SD KAB 188 8.248 0.043 0.035 2.182 18 0.057 0.034 6.391 [±] 1.282 1.504 [±] 19.782 0.063 0.037 SD KAB 8.824 0.043 0.035 2.182 18 0.057 0.034 6.391 [±] 1.282 1.504 [±] 17.682 0.056 0.037 SD KAB 0.0 Failet to converge 5.061 [±] 3.84 [±] 0.015 0.016 [±]	КА	21	12.280	0.054	0.034	1.710	21	0.067	0.033	2.295 [#] (2.462)	1.085 (0.291)	4.379 ×10 ^{-6#} (0.058)	20.589	0.066	0.033
SD KABC 20 16.978 0.038 0.038 1.178 20 0.063 0.037 0.999 [±] (0.862) 0.056 (0.260) 1.535 [±] (2.060) 19.739 0.063 0.037 SD KAB 18 8.248 0.03 0.033 2.182 18 0.057 0.034 6.391 [±] (8.344) 1.282 1.504 [±] (0.334) 17.682 0.063 0.037 SD KAB 8 Failed to converge Failed to converge<	SD KABCO	47	75.301	0.170	0.091	0.624	47	0.136	0.089	0.904 (0.312)	1.233 (0.193)	0.569 [#] (0.662)	46.748	0.132	0.088
SD KAB 18 8.248 0.043 0.035 2.182 18 0.057 0.034 6.391 ^s (3.034) 1.504 ^s (2.099) 17.682 0.056 0.034 SD KA 8 Failed to Converge Fa	SD KABC	20	16.978	0.058	0.038	1.178	20	0.063	0.037	0.999 [#] (0.862)	0.951 (0.260)	1.535 [#] (2.066)	19.739	0.063	0.037
SD KA 8 Failed to Converge	SD KAB	18	8.248	0.043	0.035	2.182	18	0.057	0.034	6.391 [#] (8.344)	1.282 (0.334)	1.504 [#] (2.099)	17.682	0.056	0.034
IDKABCO 0.0 $Unall U = U = U = U = V = V$ $U = U = U = U = V = V$ $V = U = U = U = V = V$ $V = U = U = U = V = V$ $V = U = U = U = V = V$ $V = U = U = U = V = V$ $V = U = U = U = V = V$ $V = U = U = U = V = V$ $V = U = U = U = V = V$ $V = U = U = U = V = V$ $V = U = U = U = V = V$ $V = U = U = U = V = V$ $V = U = U = U = V = V$ $V = U = U = U = V = V$ $V = U = U = U = V = V$ $V = U = U = U = V = V$ $V = U = U = U = V$ $V = U = U = U = V$ $V = U = U = V = V$ $V = U = U = V = V$ $V = U = U = V = V$ $V = U = U = V = V$ $V = U = U = V = V$ $V = U = U = V = V$ $V = U = U = V = V$ $V = U = U = V = V$ $V = U = U = V = V$ $V = U = U = V = V$ $V = U = U = V = V$ $V = U = U = V = V = V$ $V = U = U = V = V$ $V = U = U = V = V = V$ $V = U = U = V = V = V$ $V = U = U = V = V = V$ $V = U = U = V = V = V = V$ $V = U = U = V = V = V = V$ $V = U = U = V = V = V = V = V$ $V = U = V = V = V = V = V = V$ $V = U = V = V = V = V = V = V = V$ $V = U = V = V = V = V = V = V = V = V = $	SD KA	8	Failed	d to Conv	erge		Failed to	Converge	ć			Failed to Conve	rge		
ID KABC 0 Failed to Converge Failed to Converge <t< th=""><th>ID KABCO</th><th>0</th><th>Unab</th><th>le to calik</th><th>orate</th><th>ι</th><th>Jnable to</th><th>calibrate</th><th>ç</th><th></th><th></th><th>Failed to Conve</th><th>rge</th><th></th><th></th></t<>	ID KABCO	0	Unab	le to calik	orate	ι	Jnable to	calibrate	ç			Failed to Conve	rge		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ID KABC	0	Failed	d to Conv	erge		Failed to	Converge	ć			Failed to Conve	rge		
ID KA 0 Failed \odot Convert \Box Failed \odot Convert \Box Failed \Box Convert \Box Failed \Box Convert \Box Failed \Box Convert \Box Failed \Box Convert \Box	ID KAB	0	Failed	d to Conv	erge		Failed to	Converge	ć			Failed to Conve	rge		
OD KABCO 5 4.344 0.015 0.008 1.151 5 0.016 0.008 26.667^* 1.729^* $3.84\times 10^{-13^*}$ 5.000^* 0.016 0.008 OD KABC 4 3.298 0.012 0.007 1.213 4 0.013 0.007 1.011^* 0.999^* $5.061\times 10^{-8^*}$ 3.345^* 0.012 0.007 OD KAB 4 1.569 0.009 0.007 2.550 4 0.013 0.007 2.322^* $1.350\times 10^{-13^*}$ 4.009^* 0.010^* 0.016^* 0.016^* 0.016^* 0.013^* 0.020^* 0.010^* 0.000^* 0.001^* 0.001^* 0.000^*	ID KA	0	Failed	d to Conv	erge		Failed to	Converge	ç			Failed to Conve	rge		
OD KABC 4 3.298 0.012 0.007 1.213 4 0.013 0.007 1.011* 0.999* 5.061×10 ^{-8*} 3.345* 0.012 0.007* OD KAB 4 1.569 0.009 0.007 2.550 4 0.013 0.006 2071.8* 2.322* 1.350×10 ^{-13*} 4.000* 0.012 0.007 OD KAB 2 1.569 0.000 0.007 2.550 4 0.013 0.006 2071.8* 2.322* 1.350×10 ^{-13*} 4.000* 0.012 0.007 0.007 OD KA 2 1.569 0.000 0.003 1.275 2 0.007 0.003 10.03* 1.420* 4.426×10 ^{-7*} 4.000* 0.012 0.006 0.007 0.007 0.003 10.03* 1.420* 4.426×10 ^{-7*} 4.000* 0.012 0.007 0.007 0.007 0.001 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007	OD KABCO	5	4.344	0.015	0.008	1.151	5	0.016	0.008	26.667 [*] (4.934)	1.729 [*] (0.063)	3.84×10 ^{-13*} (0)	5.000*	0.016	0.008
OD KAB 4 1.569 0.009 0.007 2.550 4 0.013 0.006 $2071.8^{*}_{(7100.31)}$ $2.322^{*}_{(0.730)}$ $1.350\times10^{-13^{*}}_{(0.000)}$ $4.000^{*}_{(0.000)}$ $0.012^{*}_{(0.000)}$ $0.001^{*}_0^{*$	OD KABC	4	3.298	0.012	0.007	1.213	4	0.013	0.007	1.011 [*] (0.243)	0.999 [*] (0.061)	5.061×10 ^{-8*} (.)	3.345*	0.012	0.007
OD KA 2 1.569 0.006 0.003 1.275 2 0.007 0.003 10.039* 1.420* 4.426×10 ^{-7*} 1.658* 0.006 0.006 0.003 0.005 0.003 0.160 0.160 0.161	OD KAB	4	1.569	0.009	0.007	2.550	4	0.013	0.006	2071.8 [*] (7100.31)	2.322 [*] (0.730)	1.350×10 ^{-13*} (0.000)	4.000*	0.012	0.006
SV KABCO 116 145.206 0.337 0.252 0.799 116 0.308 0.246 0.795 0.991 1.087 116.61 0.309 0.246 SV KABC 44 58.380 0.156 0.089 0.754 44 0.136 0.087 0.463 0.772 $2.306^{\#}$ 44.003 0.137 0.087 SV KAB 31 31.385 0.107 0.067 116.61 0.087 0.067 $0.628^{\#}$ 0.772 $2.306^{\#}$ 44.003 0.137 0.087 SV KAB 37 31.385 0.107 0.067 1.167 0.067 $0.628^{\#}$ 0.771 1.091 37.002 0.116 0.067 SV KA 11 13.494 0.040 0.018 0.815 0.116 0.036 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 $0.$	OD KA	2	1.569	0.006	0.003	1.275	2	0.007	0.003	10.039 [*] (0.108)	1.420 [*] (0.151)	4.426×10 ^{-7*} (.)	1.658^{*}	0.006	0.003
SV KABC 44 58.380 0.156 0.089 0.754 44 0.136 0.087 0.463 (0.270) 0.772 (0.248) 2.306# (1.526) 44.003 0.137 0.087 SV KAB 37 31.385 0.107 0.067 1.179 37 0.115 0.067 0.628# (0.448) 0.771 1.091 (0.245) 37.002 0.116 0.067 SV KA 11 13.494 0.040 0.018 0.815 11 0.036 0.018 0.516* (0.242) 0.874* 9.000×10 ^{-7*} (0.148) 11.00* 0.036 0.018	SV KABCO	116	145.206	0.337	0.252	0.799	116	0.308	0.246	0.795 (0.191)	0.991 (0.167)	1.087 (0.470)	116.61	0.309	0.246
SV KAB 37 31.385 0.107 0.067 1.179 37 0.115 0.067 $\begin{array}{c} 0.628^{\#} \\ (0.448) \\ (0.245) \end{array}$ 0.771 1.091 \\ (1.308) \end{array} 37.002 0.116 0.067 SV KA 11 13.494 0.040 0.018 0.815 11 0.036 0.018 0.018 0.018 0.018 0.018 0.148) (.) 11.00* 0.036 0.018	SV KABC	44	58.380	0.156	0.089	0.754	44	0.136	0.087	0.463 (0.270)	0.772 (0.248)	2.306 [#] (1.526)	44.003	0.137	0.087
SV KA 11 13.494 0.040 0.018 0.815 11 0.036 0.018 0.516* 0.874* 9.000×10 ^{-7*} 11.00* 0.036 0.018	SV KAB	37	31.385	0.107	0.067	1.179	37	0.115	0.067	0.628 [#] (0.448)	0.771 (0.245)	1.091 (1.308)	37.002	0.116	0.067
	SV KA	11	13.494	0.040	0.018	0.815	11	0.036	0.018	0.516 [*] (0.242)	0.874 [*] (0.148)	9.000×10 ^{-7*} (.)	11.00*	0.036	0.018

Table 4-13: Calibration of the California (2009–10) Safety Performance Functions Using the Illinois (2009–11) Data, Multilane Divided Segments Base Conditions

Improved Prediction Models for Crash Types and Crash Severities

* CF = Calibration Factor; [#] Not significant at 90th percentile confidence interval. * Moore-Penrose inverse matrix used.

Crash	Observed	нѕм			Calibration Factor (HSM, 2010)				0	alibration	Function (Srini	vasan et al.	. 2016)			
Туре	Crashes	Pred.	MAD	MSPE	CF⁺	N Fitted	MAD	MSPE	а	b	k	N Fitted	MAD	MSPE		
КАВСО	721	437.481	2.001	10.098	1.648	721	1.978	8.385	1.960 (0.142)	0.849 (0.065)	0.376 (0.082)	723.568	1.942	7.708		
КАВС	179	155.458	0.728	1.165	1.151	179	0.754	1.198	1.161 (0.107)	0.761 (0.092)	0.340 (0.171)	178.321	0.762	1.133		
КАВ	116	79.609	0.504	0.753	1.457	116	0.553	0.726	1.323 (0.190)	0.842 (0.114)	0.401 (0.239)	115.680	0.554	0.715		
КА	21	16.234	0.150	0.108	1.294	21	0.165	0.108	1.481 (0.949)	1.059 (0.270)	0.655 (1.065)	21.163	0.164	0.108		
SD KABCO	131	184.025	0.728	1.288	0.712	131	0.629	1.061	0.741 (0.085)	0.890 (0.113)	0.680 (0.267)	131.193	0.633	1.044		
SD KABC	36	48.355	0.255	0.172	0.744	36	0.226	0.161	0.700 (0.257)	0.935 (0.207)	5.300×10 ^{-7#} (0.029)	35.943	0.230	0.161		
SD KAB	20	17.619	0.139	0.093	1.135	20	0.145	0.091	1.639 (1.307)	1.193 (0.378)	2.15×10 ⁻⁷ (0.007)	20.000	0.138	0.089		
SD KA	3	Failec	to Conv	erge	Fa	ailed to C	onverge				Failed to Conv	/erge				
id Kabco	20	3.883 ×10 ⁻⁴	0.093	0.168	51506.57	20	0.187	0.736	0.144 [#] (0.156)	0.015 [#] (0.037)	8.937 (5.005)	20.033	0.175	0.159		
ID KABC	11	Failed	to Conv	erge	Fa	Failed to Converge					Failed to Conv	/erge				
ID KAB	9	Failed	to Conv	erge	Fa	ailed to C	onverge				Failed to Conv	/erge				
ID KA	2	Failed	to Conv	erge	Fa	ailed to C	onverge				Failed to Conv	/erge	ge			
od Kabco	8	10.563	0.081	0.056	0.757	8	0.071	0.055	0.300 [#] (0.425)	0.647 [#] (0.435)	12.599 [#] (11.914)	8.035	0.071	0.054		
OD KABC	4	7.693	0.051	0.019	0.520	4	0.036	0.018	0.394 [#] (2.027)	0.902 [#] (1.715)	1.530×10 ^{-6#} (0.219)	4.000	0.036	0.018		
OD KAB	2	4.272	0.028	0.009	0.468	2	0.018	0.009	7.468 [*] (0.545)	1.937 [*] (0.275)	-* (.)	2.001*	0.018	0.009 *		
OD KA	1	4.272	0.024	0.005	0.234	1	0.009	0.005	1.069 [*] (3.836)	1.488 [*] (1.184)	4×10 ^{-5*} (.)	1.000^{*}	0.009	0.005		
SV KABCO	554	234.130	1.838	8.985	2.366	554	1.608	5.539	2.502 (0.160)	0.902 (0.071)	0.351 (0.089)	558.213	1.562	5.324		
SV KABC	126	98.006	0.566	0.796	1.286	126	0.601	0.821	1.146 (0.145)	0.739 (0.108)	0.339 (0.203)	126.156	0.611	0.764		
SV KAB	84	55.951	0.397	0.494	1.501	84	0.440	0.492	1.227 (0.229)	0.790 (0.124)	0.264 [#] (0.240)	84.167	0.448	0.472		
SV KA	15	11.346	0.111	0.089	1.322	15	0.124	0.088	1.662 [#] (1.658)	1.085 (0.355)	2.784 [#] (2.635)	15.225	0.124	0.088		

Table 4-14: Calibration of the California (2009–10) Safety Performance Functions Using the Washington (2009–11) Data, Multilane Divided Segments Base Conditions

⁺ CF = Calibration Factor; [#] Not significant at 90th percentile confidence interval. ^{*} Moore-Penrose inverse matrix used.

4.2 INTERSECTIONS

4.2.1 Estimation and Validation Data

The data used for estimation of intersection SPFs were collected from Minnesota (2009–11) and Ohio (2009–11) for rural multilane stop-controlled intersections and rural multilane four-leg signal-controlled intersections, respectively. Since not all the base conditions in the HSM were available, we slightly modified the base conditions and conducted tests to check whether the modified factors were statistically significant in the SPFs. For validation, the Ohio data are used for stop-controlled intersections and the Minnesota data for four-leg signal-controlled intersections. For both types of stop-controlled intersections, the sample sizes in the Minnesota data are larger than those in the Ohio data, which prompted us to use the Minnesota data for SPF development, and thus, the Ohio data for validation. For four-leg signal-controlled intersections, the larger number of samples in Ohio than in Minnesota motivated us to use the Ohio data for developing SPFs and the Minnesota data for validation.

The base conditions for three-leg stop-controlled intersections (3ST) and four-leg stop-controlled intersections (4ST) are specified in the current HSM. As shown in Table 4-15, most of the base conditions for intersections in the current HSM are available in Minnesota; an exception is skew angle. Specifically, according to the data description, the type of intersection is interpreted as either skewed or not skewed. Skewed intersections are excluded from the data.

Base Condition (3ST and 4ST)	Criteria	Minnesota
Intersection skew angle	0°–5°	NO
Intersection left-turn lanes	None	YES
Intersection right-turn lanes	None	YES
Lighting	None	YES

Table 4-15: HSM Base Conditions and Data Availability, Multilane Intersections

Table 4-16 summarizes descriptive statistics for base condition SPFs for 3ST intersections; the sample size is 149. The descriptive statistics for 3ST intersections from the Ohio validation data are shown in Table 4-17.

Table 4-18 presents the descriptive statistics for base condition SPFs for 4ST intersections; the sample size is 139. The descriptive statistics for 4ST intersections for the Ohio validation data are shown in Table 4-17.

As no base conditions were defined for 4SG intersections, we needed to define them; they are listed in Table 4-20. The defined base condition for lighting is not consistent with that of the stop-controlled intersections because most four-leg signal-controlled intersections are lit. Also, no information is known regarding the presence of red light–running cameras.

Table 4-21 shows descriptive statistics for base condition SPFs for 4SG intersections; the sample size is 53. The sample size for the validation data, from Minnesota, is only 24. Descriptive statistics for the validation data are shown in Table 4-22.

۲ Minnes	/ariable sota (N = 149)		Mean	S.D.	Min	Max
Major A	ADT (veh/day	()	11,651	7,759	1,325	36,000
Minor A	ADT (veh/day	/)	760	984	3	5,800
Total enterin	g vehicles (ve	h/day)	12,031	7,730	2,025	36,028
Preser	nce of lighting		0	0	0	0
Presence	of left-turn la	nes	0	0	0	0
Presence of	of right-turn la	ines	0	0	0	0
Crash Type Severity No. of Crashes			Mean	S.D.	Min	Max
	KABCO	338	2.268	2.426	0	12
Total	КАВС	139	0.933	1.277	0	8
TOtal	КАВ	62	0.416	0.754	0	4
	KA	10	0.067	0.277	0	2
Same direction	КАВСО	85	0.57	0.988	0	6
	КАВС	34	0.228	0.534	0	2
Same unection	КАВ	13	0.087	0.327	0	2
	KA	2	0.013	0.115	0	1
	KABCO	92	0.617	1.211	0	8
Intersecting	КАВС	50	0.336	0.827	0	6
direction	КАВ	29	0.195	0.541	0	4
	KA	6	0.04	0.229	0	2
	KABCO	10	0.067	0.251	0	1
Opposite direction	КАВС	4	0.027	0.162	0	1
Opposite direction	KAB	2	0.013	0.115	0	1
	KA	1	0.007	0.082	0	1
	KABCO	152	1.020	1.500	0	11
Cingle yebiele	КАВС	51	0.342	0.624	0	3
Single vehicle	KAB	18	0.121	0.347	0	2
	KA	1	0.007	0.082	0	1

Table 4-16: Descriptive Statistics for Base Condition SPFs, Multilane Three-Leg Stop-Controlled (3ST) Intersections

۷ Ohio	/ariable o (N = 117)		Mean	S.D.	Min	Max
Major A	ADT (veh/day	()	8,859	5,485	830	25,000
Minor A	ADT (veh/day	()	1,033	1,231	88	10,450
Total enterin	g vehicles (ve	h/day)	9,375	5,482	915	25,320
Preser	ice of lighting		0	0	0	0
Presence	Presence of left-turn lanes				0	0
Presence c	Presence of right-turn lanes				0	0
Ske	1.880	1.748	0	5		
Crash Type	Mean	S.D.	Min	Max		
	КАВСО	157	1.342	2.146	0	15
Total	КАВС	63	0.538	1.071	0	5
TOLAI	КАВ	46	0.393	0.861	0	5
	KA	15	0.128	0.446	0	3
	KABCO	61	0.521	1.142	0	7
Same direction	КАВС	21	0.179	0.448	0	2
Same direction	КАВ	15	0.128	0.384	0	2
	KA	4	0.034	0.182	0	1
	KABCO	47	0.402	0.956	0	5
Intersecting	КАВС	23	0.197	0.605	0	3
direction	KAB	17	0.145	0.478	0	3
	КА	8	0.068	0.253	0	1
	KABCO	12	0.103	0.402	0	3
Opposito direction	КАВС	5	0.043	0.203	0	1
Opposite direction	КАВ	3	0.026	0.159	0	1
	KA	0	0	0	0	0
	КАВСО	37	0.316	0.611	0	3
Single vehicle	КАВС	14	0.12	0.375	0	2
Single Venicle	КАВ	11	0.094	0.347	0	2
	КА	3	0.026	0.206	0	2

Table 4-17: Descriptive Statistics for Base Condition Validation Data, Multilane Three-LegStop-Controlled (3ST) Intersections

۱ Minnes	/ariable sota (N = 139)		Mean	S.D.	Min	Max
Major A	ADT (veh/day	/)	10,803	6,606	2,422	34,500
Minor A	ADT (veh/day	()	589	629	25	4,654
Total enterin	g vehicles (vel	h/day)	11,392	6,667	2,499.5	34,583
Preser	nce of lighting		0	0	0	0
Presence	of left-turn la	nes	0	0	0	0
Presence of	0	0	0	0		
Crash Type	Crash Type Severity No. of Crashes			S.D.	Min	Max
	КАВСО	390	2.806	3.476	0	23
Total	КАВС	165	1.187	1.662	0	12
Total	КАВ	80	0.576	1.028	0	7
	КА	14	0.101	0.439	0	4
Same direction	КАВСО	98	0.705	1.207	0	8
	КАВС	27	0.194	0.48	0	2
Sume un cettom	КАВ	12	0.086	0.306	0	2
	КА	1	0.007	0.085	0	1
	КАВСО	151	1.086	2.118	0	17
Intersecting	КАВС	85	0.612	1.299	0	10
direction	КАВ	41	0.295	0.847	0	7
	КА	10	0.072	0.393	0	4
	КАВСО	15	0.108	0.334	0	2
Opposite direction	КАВС	9	0.065	0.247	0	1
opposite direction	КАВ	5	0.036	0.187	0	1
	КА	1	0.007	0.085	0	1
	КАВСО	126	0.906	1.197	0	6
Single vehicle	КАВС	44	0.317	0.59	0	2
Single venicle	КАВ	22	0.158	0.404	0	2
	КА	2	0.014	0.120	0	1

Table 4-18: Descriptive Statistics for Base Condition SPFs, Multilane Four-Leg Stop-Controlled (4ST) Intersections

V. Ohi	/ariable io (N = 83)		Mean	S.D.	Min	Max
Major A	ADT (veh/day	()	9,853.771	4,799.732	2,690	20,623
Minor A	ADT (veh/day	()	1,320.446	2,542.512	95	20,623
Total enterin	g vehicles (ve	h/day)	11,174.217	5,949.802	3,300	41,246
Presen	ice of lighting		0	0	0	0
Presence	of left-turn la	nes	0	0	0	0
Presence c	0	0	0	0		
Ske	w angle (°)		1.831	1.576	0	5
Crash Type	Severity	No. of Crashes	Mean	S.D.	Min	Max
	KABCO	199	2.398	3.072	0	16
Total	КАВС	83	1.000	1.593	0	8
Total	КАВ	69	0.831	1.387	0	7
	KA	23	0.277	0.786	0	5
	KABCO	42	0.506	0.875	0	4
Sama direction	КАВС	17	0.205	0.435	0	2
Same direction	КАВ	12	0.145	0.354	0	1
	KA	2	0.024	0.154	0	1
	КАВСО	96	1.157	2.167	0	12
Intersecting	КАВС	47	0.566	1.241	0	7
direction	КАВ	40	0.482	1.063	0	5
	KA	19	0.229	0.687	0	4
	KABCO	18	0.217	0.47	0	2
Opposite direction	КАВС	8	0.096	0.335	0	2
Opposite direction	КАВ	8	0.096	0.335	0	2
	KA	1	0.012	0.11	0	1
	KABCO	43	0.518	0.888	0	6
Single vehicle	КАВС	11	0.133	0.341	0	1
Single Venicle	КАВ	9	0.108	0.313	0	1
	KA	1	0.012	0.11	0	1

 Table 4-19: Descriptive Statistics for Base Condition Validation Data, Multilane Four-Leg Stop-Controlled (4ST) Intersections

Base Condition	Criteria	Ohio					
Intersection skew angle	0°–5°	Х					
Intersection left-turn lanes	None	Х					
Intersection right-turn lanes	None	Х					
Red light violation cameras	None						
Lighting	Present	Х					

 Table 4-20: Base Condition Criteria and Data Availability, Multilane Four-Leg Signal-Controlled

 (4SG) Intersections

Table 4-21: Descriptive Statistics for Base Condition SPFs, Multilane Four-Leg Signal-Controlled (4SG) Intersections

Variable	Mean	S.D.	Min	Max		
Major AADT (veh/day)			4,686	2,704	880	12,420
Minor A	1,902	1,748	157	7,992		
Total enterin	g vehicles (ve	h/day)	6,587	3,158	1,522	14,472
Preser	nce of lighting		1	1	1	1
Presence of left-turn lanes			0	0	0	0
Presence of right-turn lanes			0	0	0	0
Skew angle (°)			1.264	1.211	0	5
Crash Type	Severity	No. of Crashes	Mean	S.D.	Min	Max
	КАВСО	249	4.698	4.126	0	16
Total	КАВС	33	0.623	1.078	0	5
TOLAT	KAB	16	0.302	0.638	0	3
	KA	4	0.075	0.267	0	1
	КАВСО	105	1.981	2.374	0	9
Same direction	КАВС	14	0.264	0.625	0	3
Same unection	KAB	4	0.075	0.331	0	2
	KA	1	0.019	0.137	0	1
Intersecting direction	KABCO	77	1.453	1.927	0	11
	КАВС	13	0.245	0.617	0	3
	КАВ	8	0.151	0.496	0	3
	KA	1	0.019	0.137	0	1
Opposite direction	KABCO	38	0.717	0.885	0	4
	КАВС	4	0.075	0.267	0	1
	KAB	3	0.057	0.233	0	1
	KA	1	0.019	0.137	0	1
	КАВСО	29	0.547	0.867	0	4
Single vehicle	КАВС	2	0.038	0.192	0	1
Single Venicle	КАВ	1	0.019	0.137	0	1
	KA	1	0.019	0.137	0	1

Variable Minnesota (N = 24)			Mean	S.D.	Min	Max
Major AADT (veh/day)			11,371	4543	5101	22,468
Minor AADT (veh/day)			3304	1764	417	6649
Total enterin	g vehicles (ve	h/day)	14,676	4739	7228	24,727
Presence of lighting			Not Available	Not Available	Not Available	Not Available
Presence of left-turn lanes			0	0	0	0
Presence o	of right-turn la	anes	0	0	0	0
Skew angle (°)			Not Available	Not Available	Not Available	Not Available
Crash Type	Severity	No. of Crashes	Mean	S.D.	Min	Max
	КАВСО	202	8.417	7.994	1	32
Total	КАВС	57	2.375	2.568	0	12
	KAB	16	0.667	0.761	0	2
	KA	2	0.083	0.408	0	2
Same direction	KABCO	96	4	4.314	0	16
	КАВС	24	1	1.445	0	5
	КАВ	5	0.208	0.415	0	1
	KA	1	0.042	0.204	0	1
	KABCO	65	2.708	2.662	0	11
Intersecting	КАВС	25	1.042	1.197	0	5
direction	КАВ	10	0.417	0.584	0	2
	KA	1	0.042	0.204	0	1
	KABCO	16	0.667	1.049	0	4
Opposite direction	КАВС	5	0.208	0.509	0	2
	KAB	0	0	0	0	0
	KA	0	0	0	0	0
Single vehicle	KABCO	25	1.042	1.654	0	7
	КАВС	3	0.125	0.338	0	1
	КАВ	1	0.042	0.204	0	1
	КА	0	0	0	0	0

Table 4-22: Descriptive Statistics for Base Condition Validation Data, Multilane Four-LegSignal-Controlled (4SG) Intersections

4.2.2 Estimated Models

Base condition SPFs for 3ST intersections are exhibited in Table 4-23. We tried to estimate regression coefficients for both the major- and minor-road traffic volumes. In cases where the minor-road traffic volume was statistically insignificant, we estimated a coefficient for the total entering volume instead. In either case, the coefficients do not indicate the relationship between crashes at 3ST intersections, and entering volumes are linear. In addition, only 10 reported KA crashes are sampled for analysis, rendering all KA crash model results unreliable. Such SPFs should be used with caution. This also applies for the single-vehicle KAB crash SPF, all opposite-direction crash SPFs, and the same-direction KAB crash SPF. The MADs indicate the average deviations between crash counts, predicted by SPFs, and the observed ones are relatively low.

Base condition SPFs for 4ST intersections are presented in Table 4-24. Apart from KABCO, KABC, KAB, same-direction KABCO, and intersecting-direction KABCO crash SPFs, the total entering volume is used as the exposure variable in the SPF development process. This is because statistically insignificant minor-road traffic volumes result when estimating SPFs using both major- and minor-road volumes. Similar to the 3SG intersection KA crash patterns, only 14 reported KA crashes are available in the data, and any KA crash SPF should be used with caution. We also suggest the same-direction KAB crash SPF, the single-vehicle KAB crash SPF, and all opposite-direction SPFs be used only with extra care due to the small samples modeled. The MAD measures indicate low average residuals.

Base condition SPFs for various crash types for 4SG intersections are shown in Table 4-25. In all SPFs, we used the total entering volume, since minor-road volumes are insignificant when using both the majorand minor-road volumes as independent variables. The total entering-volume estimated coefficients range from -0.682 to 1.921. They indicate nonlinear relationships between crashes and entering volume. Yet, the volume is almost linearly correlated with intersecting-direction KABCO crashes, as indicated by the volume coefficient. In addition, we used Moore-Penrose inverse matrices for all KA SPFs, the oppositedirection KABC SPF, the opposite-direction KAB SPF, the single-vehicle KABC SPF, and the single-vehicle KAB SPF, due to inadequate samples. We suggest those SPFs be used with caution. Finally, the average residuals are reasonably low, as indicated by the MADs.

4.2.3 Validation of Models

We conducted calibration and validation of rural multilane intersection SPFs using the Ohio data for 3ST and 4ST intersections and the Minnesota data for the 4SG intersections. The results are presented in tables 4-26 through 4-27. The calibration factors, obtained using the HSM calibration method, are not near 1. The calibration function performs slightly better than the HSM calibration method in a few cases. It should be noted that we used the Moore-Penrose inverse matrix for several SPFs for the severe crash categories due to limited samples.

Crash Type Minnesota (N = 149)	Severity	bo	b1	b2	b₃	k	–2LL	AIC	MAD
Total	КАВСО	-9.118 (1.259)	0.776 (0.123)	0.270 (0.053)	-	0.323 (0.100)	548.0	556	1.516
	КАВС	-9.392 (1.632)	0.659 (0.160)	0.346 (0.073)	-	0.261 [#] (0.159)	365.6	373.6	0.793
	КАВ	-9.208 (2.264)	0.546 (0.221)	0.357 (0.106)	-	0.367 [#] (0.346)	240.6	248.6	0.526
	KA (10 crashes)	2.910 [#] (5.145)	-	-	-0.741 [#] (0.573)	1.913 [#] (3.120)	72.7	78.7	0.125
Same direction	КАВСО	-14.411 (2.166)	1.033 (0.209)	0.502 (0.094)	-	0.236 [#] (0.235)	264.2	272.2	0.582
	КАВС	-12.552 (3.234)	0.737 (0.315)	0.504 (0.151)	-	0.539 [#] (0.698)	160.1	168.1	0.336
	KAB (13 crashes)	-8.279 [#] (5.067)	-	-	0.510 [#] (0.542)	3.000 [#] (3.15)	88.9	94.9	0.161
	KA (2 crashes)	-9.971 [#] (13.798)	-	-	0.491 [#] (1.461)	5.32×10 ^{-6#} (0.609)	21.0	27	0.027
Intersecting direction	КАВСО	-12.652 (2.242)	0.746 (0.215)	0.651 (0.110)	-	0.602 (0.321)	275.5	283.5	0.658
	КАВС	-14.356 (2.789)	0.728 (0.268)	0.833 (0.150)	-	0.435 [#] (0.343)	183.5	191.5	0.394
	КАВ	-13.058 (3.304)	0.575 (0.320)	0.774 (0.182)	-	0.365 [#] (0.540)	135.5	143.5	0.272
	KA (6 crashes)	4.137 [#] (8.354)	-	-	-0.934 [#] (0.928)	8.496 [#] (10.579)	48.1	54.1	0.079
	KABCO (10 crashes)	-6.978 [#] (8.480)	-	-	0.345 [#] (0.902)	9.029 ×10 ^{-7#} (0.029)	72.5	78.5	0.126
Opposite	KABC (4 crashes)	-6.946 [#] (9.189)	-	-	0.236 [#] (0.985)	8.69×10 ^{-7#} (0.032)	37.6	43.6	0.051
direction	KAB (2 crashes)	3.758 [#] (10.847)	-	-	-1.019 [#] (1.228)	1.43×10 ^{-4#} (10.729)	20.5	26.5	0.026
	KA (1 crash)	42.737 [#] (68.643)	-	-	-5.782 [#] (8.396)	4.734 [#] (19.475)	7.9	13.9	0.016
Single vehicle	КАВСО	-7.259 (1.796)	-	-	0.663 (0.192)	0.826 (0.251)	405.2	411.2	1.026
	КАВС	-7.837 (2.281)	-	-	0.608 (0.242)	0.256 [#] (0.394)	219.3	225.3	0.469
	KAB (18 crashes)	-2.295 [#] (4.036)	-	-	-0.097 [#] (0.441)	2.927 ×10 ^{-7#} (0.007)	114.4	120.4	0.218
	KA (1 crash)	1.116 [#] (15.288)	-	-	-0.798 [#] (1.714)	0.002 [#] (77.506)	11.8	17.8	0.013

Table 4-23: Base Condition SPFs, Multilane Three-Leg Stop-Controlled (3ST) Intersections

* Moore-Penrose inverse matrix used.

[#] Not significant at 90th percentile confidence interval.
Crash Type Minnesota (N = 139)	Severity	bo	b1	b2	b3	k	–2LL	AIC	MAD
	КАВСО	-9.561 (1.353)	0.773 (0.140)	0.383 (0.073)	-	0.410 (0.099)	k-2LLAIC 110 199)553.9561.9 133 162 381.2389.2 133 162 269.4277.4 $357"$ 216 85.591.5 362 210 284.8292.8 210 139.1 145.1 $177"$ 82.5 88.5 100 $0^{5#}$ 11.217.2 345 271 342.2350.2 367 578 286.3 292.3 498 428 271 181.8187.8 215 532 253 66.272.2 $91"$ 253 97.5103.5 545 $0^{-7#}$ 253 65.871.8 237 125 65.871.8 238 $0^{-6#}$ 43.049 125 125 191.8197.8 237 1343.6 349.6 1449 191.8 197.8 $292"$ $827)$ 126.5132.5 778 	1.886	
-	КАВС	-10.411 (1.814)	0.711 (0.185)	0.475 (0.102)	-	0.433 (0.162)	381.2	389.2	1.064
lotal	КАВ	-8.843 (2.404)	0.441 (0.249)	0.509 (0.142)	-	0.683 (0.323)	269.4	277.4	0.668
	KA (14 crashes)	-13.245 (6.064)	-	-	1.053 [#] (0.645)	5.857 [#] (4.216)	85.5	91.5	0.184
	КАВСО	-14.343 (2.160)	1.158 (0.218)	0.345 (0.115)	-	0.362 (0.210)	284.8	292.8	0.696
_	КАВС	-13.190 (3.713)	-	-	1.118 (0.391)	0.619 [#] (0.845)	139.1	145.1	0.307
Same direction	KAB (12 crashes)	-9.502 (5.235)	-	-	0.641 [#] (0.558)	0.877 [#] (1.989)	82.5	88.5	0.158
	KA (1 crash)	9.504 [#] (23.757)	-	-	-1.733 [#] (2.708)	2.100 ×10 ^{-5#} (3.983)	11.2	17.2	0.014
	КАВСО	-11.531 (2.333)	0.496 (0.234)	0.939 (0.148)	-	0.942 (0.271)	342.2	350.2	1.048
Intersecting	КАВС	-8.626 (2.967)	-	-	0.757 (0.319)	1.867 (0.578)	286.3	292.3	0.805
direction	КАВ	-9.196 (4.102)	-	-	0.740 (0.441)	3.498 (1.428)	181.8	187.8	0.483
	КА	-10.886 (7.863)	-	-	0.770 (0.843)	11.215 (8.632)	66.2	72.2	0.137
	KABCO (15 crashes)	-6.868 [#] (4.439)	-	-	0.383 [#] (0.476)	0.191 [#] (1.253)	97.5	103.5	0.193
Opposite	KABC (9 crashes)	-6.939 [#] (6.289)	-	-	0.338 [#] (0.676)	8.545 ×10 ^{-7#} (0.023)	65.8	71.8	0.121
direction	KAB (5 crashes)	-6.969 [#] (8.465)	-	-	0.276 [#] (0.911)	3.638 ×10 ^{-6#} (0.125)	43.0	49	0.069
	KA (1 crash)	-77.373 [#] (114.01)	-	-	7.178 [#] (11.168)	0.776 [#] (23.934)	7.1	13.1	0.013
	КАВСО	-9.855 (1.848)	-	-	0.929 (0.196)	0.337 (0.188)	85.5 91. 284.8 292. 139.1 145. 82.5 88. 11.2 17. 342.2 350. 286.3 292. 181.8 187. 66.2 72. 97.5 103. 65.8 71. 43.0 4 7.1 13. 343.6 349. 191.8 197. 126.5 132.	349.6	0.849
Single	КАВС	-10.416 (2.743)	-	-	0.876 (0.290)	0.154 [#] (0.449)	191.8	197.8	0.442
vehicle	KAB (22 crashes)	-7.161 (3.664)	-	-	0.456 [#] (0.392)	0.092 [#] (0.827)	126.5	132.5	0.268
*	KA (2 crashes)	-27.071 (15.661)	-	-	2.284 [#] (1.591)	2.778 ×10 ^{-6#} (0.108)	-2LL 553.9 381.2 269.4 85.5 284.8 139.1 82.5 139.1 342.2 342.2 181.8 66.2 97.5 65.8 43.0 7.1 343.6 191.8 126.5 15.9	21.9	0.027

Table 4-24: Base Condition SPFs, Multilane Four-Leg Stop-Controlled (4ST) Intersections

^{*} Moore-Penrose inverse matrix used.

[#] Not significant at 90th percentile confidence interval.

Crash Type Ohio (N = 53)	Severity	bo	b 1	b2	b₃	k	–2LL	AIC	MAD
	КАВСО	-7.741 (2.037)	-	-	0.932 (0.232)	0.443 (0.151)	264.8	270.8	2.792
Total	КАВС	rerity b_0 b_1 b_2 b_3 k -211 BCO -7.741 - - 0.932 0.443 264.8 ABC -14.318 - - 1.442 0.775# 105.7 AB -14.662 - 1.399 0.499# 69.5 KA -0.930* - - -0.318* 4.932×10.6* 28.8* ashes) (14.969) - - 0.316* (0.629) 69.5 KA -0.930* - - -0.318* 4.932×10.6* 28.8* ashes) (14.969) - - 1.659 0.786# 62.7 RCO -12.709 - - 1.242# 5.026# 26.7 ABC -14.669# - - 1.242# 5.026# 26.7 KA -0.050* - - -0.592* 3.879×10.7* 9.2* rash (.) - 1.024 0.561 1	111.7	0.728					
Total	КАВ	-14.662 (5.772)	-	-	1.399 (0.644)	0.499 [#] (0.829)	69.5	75.5	0.434
	KA (4 crashes)	-0.930 [*] (14.969)	-	-	-0.318 [*] (1.734)	4.932×10 ^{-6*} (0.676)	28.8*	34.8*	0.140*
	КАВСО	-12.709 (2.805)	-	-	1.391 (0.316)	0.443 (0.213)	183.3	189.3	1.567
Same direction	КАВС	-17.140 (6.798)	-	-	1.659 (0.756)	0.786 [#] (1.067)	62.7	68.7	0.390
Same direction	КАВ	-14.669 [#] (11.669)	-	-	1.242 [#] (1.305)	5.026 [#] (8.002)	26.7	32.7	0.137
	KA (1 crash)	-0.050 [*] (.)	-	-	-0.592 [*] (0.114)	3.879×10 ^{-7*} (.)	9.2*	15.2 [*]	0.036*
	КАВСО	-9.724 (3.021)	-	-	1.024 (0.342)	0.561 (0.268)	166.5	172.5	1.123
Intersecting	КАВС	-14.965 (7.444)	-	-	1.412 (0.837)	1.925 [#] (1.787)	61.2	67.2	0.396
direction	КАВ	-20.048 (9.846)	-	-	1.921 (1.095)	2.105 [#] (2.486)	42.6	48.6	0.256
	KA (1 crash)	-0.088 [*] (0.006)	-	-	-0.575 [*] (0.107)	2.146×10 ^{-7*} (.)	10.3*	16.3*	0.038*
	КАВСО	-9.904 (4.564)	-	-	0.965 (0.518)	0.999 [#] (2.342)	119.3	125.3	0.673
Opposite	KABC (4 crashes)	0.813 [*] (.)	-	-	-0.519 [*] (0.060)	1.042×10 ^{-7*} (.)	29.4*	35.4 [*]	0.143*
direction	KAB (3 crashes)	-1.476 [*] (.)	-	-	-0.288 [*] (.)	1.245×10 ^{-6*} (.)	23.4*	29.4*	0.108*
	KA (1 crash)	0.778 [*] (12.892)	-	-	-0.682 [*] (1.522)	5.146×10 ^{-6*} (.)	9.9*	15.9 [*]	0.037*
	KABCO (14 crashes)	1.557 [#] (3.382)	-	-	-0.378 [#] (0.393)	0.573 [#] (0.550)	105.3	111.3	0.685
Single vehicle	KABC (2 crashes)	-4.075 [*] (0.350)	-	-	-0.0269 [*] (0.0611)	1.623×10 ^{-7*} (.)	17.2*	23.2*	0.075*
Single Venicie	KAB (1 crash)	-5.352 [*] (12.126)	-	-	0.039 [*] (1.393)	4.470×10 ^{-7*} (.)	9.9*	15.9 [*]	0.038*
	KA (1 crash)	-5.352 [*] (12.126)	-	-	0.039 [*] (1.393)	4.470×10 ^{-7*} (.)	9.9*	15.9 [*]	0.038*

Table 4-25: Base Condition SPFs, Multilane Four-Leg Signal-Controlled (4SG) Intersections

* Moore-Penrose inverse matrix used.

[#] Not significant at 90th percentile confidence interval.

Crash	Observed	нѕм			Calibra	tion Fact	or (HSM,	, 2010) Calibration Function (Srinivasan et al., 2016)						
Туре	Crashes	Pred.	MAD	MSPE	CF⁺	N Fitted	MAD	MSPE	а	b	k	N Fitted	MAD	MSPE
КАВСО	157	256.174	1.636	4.814	0.613	157	1.286	3.938	0.643 (0.142)	0.939 (0.236)	1.062 (0.294)	155.74	1.284	3.952
КАВС	63	111.594	0.898	1.261	0.565	63	0.709	1.048	0.557 (0.099)	1.240 (0.378)	1.544 (0.620)	63.817	0.709	1.057
КАВ	46	51.146	0.587	0.699	0.899	46	0.566	0.697	1.163 (0.497)	1.344 (0.482)	1.808 (0.832)	46.980	0.566	0.708
КА	15	9.408	0.197	0.207	1.594	15	0.237	0.211	0.002 (0.004)	-1.573 (0.836)	2.891 [#] (2.499)	14.667	0.219	0.184
SD KABCO	61	66.245	0.697	1.237	0.921	61	0.675	1.224	0.752 (0.178)	0.534 (0.224)	1.797 (0.686)	60.399	0.677	1.219
SD KABC	21	28.462	0.327	0.201	0.738	21	0.288	0.192	0.691 (0.370)	0.943 (0.380)	0.356 [#] (0.859)	21.094	0.289	0.192
SD KAB	15	9.097	0.187	0.147	1.649	15	0.226	0.144	2.542 [#] (6.035)	1.173 [#] (0.941)	1.043 [#] (1.605)	14.996	0.225	0.144
SD KA	4	1.403	0.045	0.034	2.851	4	0.066	0.033	0.006 [#] (0.046)	-0.404 [#] (1.821)	9.400×10 ^{-5#} (2.894)	4.000	0.066	0.033
ID KABCO	47	77.587	0.741	1.105	0.606	47	0.592	0.916	0.558 (0.152)	0.637 (0.306)	2.890 (1.154)	47.174	0.597	0.879
ID KABC	23	43.927	0.464	0.502	0.524	23	0.331	0.383	0.311 (0.161)	0.378 [#] (0.344)	5.613 (2.984)	22.937	0.34	0.358
ID KAB	17	26.069	0.305	0.253	0.652	17	0.249	0.231	0.367 [#] (0.267)	0.566 [#] (0.414)	4.200 [#] (2.899)	17.002	0.254	0.223
ID KA	8	6.103	0.116	0.068	1.311	8	0.131	0.07	4.590×10 ^{-4#} (0.002)	-1.490 [#] (1.474)	9.104×10 ^{-7#} (0.024)	8.000	0.119	0.059
OD KABCO	12	7.406	0.155	0.160	1.620	12	0.187	0.157	27682 [*] (2.142×10⁻⁶)	4.651 [*] (0.133)	2.976 [*] (2.787)	11.947 *	0.177 *	0.151
OD KABC	5	2.846	0.065	0.041	1.757	5	0.081	0.041	1.864 [*] (.)	1.010^{*} (.)	6.469×10⁻³* (.)	5.119*	0.082	0.040
OD KAB	3	2.021	0.042	0.026	1.485	3	0.051	0.026	2.200×10 ^{-5*} (1.400×10 ⁻⁵)	-1.552* (.)	9.786×10 ^{-8*} (8.320×10 ⁻ ⁴)	3.000*	0.049 *	0.025 *
OD KA	0	100.834	0.862	60.951	0	0	0	0		Fa	iled to Conver	ge		
SV KABCO	37	102.663	0.747	0.707	0.360	37	0.459	0.351	0.361 (0.064)	1.034 (0.460)	0.361 [#] (0.536)	36.955	0.458	0.351
SV KABC	14	34.665	0.347	0.168	0.404	14	0.211	0.136	0.706 [#] (0.703)	1.498 (0.856)	1.075 [#] (1.663)	13.986	0.21	0.135
SV KAB	11	14.895	0.202	0.121	0.739	11	0.174	0.120	8.350×10 ^{-13*} (0)	-12.217* (4.010× 10 ⁻⁴)	2.236 [*] (2.724)	10.973 *	0.168	0.115
SV KA	3	0.950	0.034	0.043	3.158	3	0.051	0.043	5.402×10⁵⁵* (.)	-1.645 [*] (.)	1.135 [*] (2.192)	2.903*	0.048	0.040

58

Table 4-26: Validation of the Minnesota (2009–11) Safety Performance Functions Using the Ohio (2009–11) Data, Three-Leg Stop-Controlled (3ST) Intersections

⁺Calibration Factor; ^{*} Moore-Penrose inverse matrix used; [#] Not significant at 90th percentile confidence interval.

* Moore-Penrose inverse matrix used.

[#] Not significant at 90th percentile confidence interval.

Crash	Observed	нѕм			Cali	bration F	actor (HS	HSM) Calibration Function (Srinivasan et al. 2016)						
Туре	Crashes	Pred.	MAD	MSPE	CF⁺	N Fitted	MAD	MSPE	а	b	k	N Fitted	MAD	MSPE
КАВСО	199	285.409	2.572	13.306	0.697	199	2.114	9.81	0.922 (0.234)	0.817 (0.196)	0.694 (0.184)	202.66	2.098	8.833
КАВС	83	132.870	1.381	4.001	0.625	83	1.122	2.688	0.764 (0.143)	0.717 (0.240)	1.124 (0.419)	83.856	1.096	2.348
КАВ	69	66.733	0.974	1.941	1.034	69	0.985	1.959	1.030 (0.204)	0.720 (0.274)	1.329 (0.532)	69.392	0.968	1.778
КА	23	8.143	0.334	0.637	2.824	23	0.438	0.612	2.638 [#] (3.970)	0.957 [#] (0.632)	3.014 (1.663)	23.588	0.443	0.611
SD KABCO	42	67.011	0.747	1.138	0.627	42	0.620	0.815	0.634 (0.122)	0.699 (0.257)	0.673 [#] (0.476)	42.536	0.623	0.725
SD KABC	17	15.813	0.307	0.185	1.075	17	0.314	0.186	0.219 [#] (0.230)	0.036 [#] (0.540)	2.706×10 ^{-8#} (4.650×10 ⁻⁴)	17.004	0.33	0.186
SD KAB	12	7.120	0.201	0.123	1.685	12	0.239	0.118	16.042 [#] (50.849)	1.957 [#] (1.356)	7.206×10 ^{-6#} (0.404)	12.000	0.234	0.120
SD KA	2	0.603	0.031	0.024	3.316	2	0.048	0.025	0.002 [#] (0.010)	-0.459 [#] (0.927)	5.835×10 ^{-6#} (0.375)	2.000	0.047	0.024
ID KABCO	96	201.074	2.408	34.202	0.477	96	1.61	10.94 6	1.056 (0.202)	0.295 (0.166)	1.979 (0.567)	96.532	1.373	4.559
ID KABC	47	50.749	0.78	1.452	0.926	47	0.764	1.451	1.279 (0.497)	1.786 (0.689)	2.205 (0.892)	48.808	0.760	1.525
ID KAB	40	24.419	0.608	1.114	1.638	40	0.688	1.068	4.304 [#] (4.039)	1.842 (0.765 <u>)</u>	2.439 (1.072)	41.749	0.681	1.129
ID KA	19	5.952	0.275	0.487	3.192	19	0.377	0.460	5.757* (13.421)	1.226 [#] (0.884)	3.166 [#] (1.954)	19.301	0.377	0.463
OD KABCO	18	8.929	0.279	0.226	2.016	18	0.342	0.211	58.693 [#] (159.81)	2.546 (1.259)	0.004 [#] (0.776)	18.000	0.330	0.210
OD KABC	8	5.477	0.149	0.110	1.461	8	0.174	0.109	1000 [#] (2396.4)	3.459 (0.916)	0.718 [#] (1.882)	7.771	0.166	0.106
OD KAB	8	2.998	0.126	0.114	2.668	8	0.174	0.109	1000 [#] (2467.560)	2.811 (0.760)	0.871 [#] (2.081)	7.722	0.168	0.106
OD KA	1	1.076	0.025	0.024	0.930	1	0.024	0.023	0.034 [#] (0.098)	0.108 [#] (0.306)	8.483×10 ^{-6#} (0.638)	1.000	0.024	0.012
SV KABCO	43	74.346	0.734	0.95	0.578	43	0.608	0.749	0.582 (0.100)	0.957 (0.386)	0.422 [#] (0.348)	43.248	0.609	0.747
SV KABC	11	25.943	0.352	0.157	0.424	11	0.225	0.114	0.294 [#] (0.316)	0.663 [#] (0.903)	1.464×10 ^{-6#} (0.038)	11.016	0.227	0.114
SV KAB	9	13.087	0.229	0.098	0.688	9	0.191	0.095	1.097 [#] (2.053)	1.277 [#] (1.047)	1.553×10⁻⁵# (0.052)	8.690	0.188	0.095
SV KA	1	1.099	0.025	0.012	0.910	1	0.024	0.012	0.050 [#] (0.206)	0.296 [#] (0.881)	9.103×10 ^{-6#} (0.552)	1.000	0.024	0.012

Table 4-27: Calibration of the Minnesota (2009–11) Safety Performance Functions Using the Ohio (2009–11) Data, Four-Leg Stop-Controlled (4ST) Intersections

Improved Prediction Models for Crash Types and Crash Severities

⁺Calibration Factor; ^{*} Moore-Penrose inverse matrix used; [#] Not significant at 90th percentile confidence interval.

59

Crash	Observed	нсм			Cal	ibration F	actor (H	(HSM) Calibration Function (Srinivasan et al. 2016)						
Туре	Crashes	Pred.	MAD	MSPE	CF⁺	N Fitted	MAD	MSPE	а	b	k	N Fitted	MAD	MSPE
КАВСО	202	238.99	5.664	45.653	0.845	202	5.239	44.93	0.227 [#] (0.249)	1.551 (0.473)	0.358 (0.138)	200.025	4.929	39.730
КАВС	57	45.671	1.491	5.074	1.248	57	1.591	4.718	1.289 (0.395)	0.944 (0.376)	0.280 [#] (0.208)	56.522	1.581	4.771
КАВ	16	21.439	0.667	0.590	0.746	16	0.596	0.514	0.697 [*] (0.025)	0.724 [*] (0.593)	8.5×10⁻⁵* (.)	15.135 [*]	0.602*	0.513*
KA	2	1.466	0.140	0.162	1.364	2	0.161	0.162		Fa	ailed to Conv	/erge		
SD KABCO	96	139.79	3.133	15.321	0.687	96	2.791	12.42	0.477 [#] (0.363)	1.189 (0.422)	0.547 (0.263)	95.170	2.746	11.927
SD KABC	24	22.243	1.063	1.672	1.079	24	1.082	1.660	1.071 (0.314)	0.875 [#] (0.540)	0.920 [#] (0.751)	23.710	1.081	1.683
SD KAB	5	4.637	0.316	0.166	1.078	5	0.324	0.166	0.400 [*] (.)	0.387 [*] (.)	0* (.)	5.000*	0.328*	0.164*
SD KA	1	0.045	0.043	0.042	22.40	1	0.082	0.043	0* (.)	-1.287 [*] (.)	0.794 [*] (.)	1.009*	0.072*	0.033*
ID KABCO	65	79.477	1.871	6.012	0.818	65	1.727	5.685	0.767 [*] (0.504)	1.048 [*] (0.525)	0.334 [*] (0.210)	64.778 [*]	1.724*	5.662*
ID KABC	25	17.941	0.795	1.233	1.393	25	0.807	1.118	1.372 (0.318)	0.933 (0.481)	0.059 [#] (0.273)	24.966	0.807	1.126
ID KAB	10	15.474	0.498	0.380	0.646	10	0.405	0.293	0.562*	0.587 [*] (.)	0* (.)	10.000*	0.452*	0.296*
ID KA	1	1.093	0.080	0.037	0.915	1	0.077	0.037	2.661 [*] (0.617)	1.411 [*] (0.323)	9.6×10⁻²* (.)	0.846*	0.071*	0.037*
OD KABCO	16	34.491	1.105	1.512	0.464	16	0.699	0.954	0.279 (0.164)	2.158 (1.156)	0.471 [#] (0.630)	16.044	0.671	0.918
OD KABC	5	2.454	0.273	0.257	2.037	5	0.340	0.243	13021.250 [*] (.)	4.897 [*] (.)	0.562 [*] (.)	4.978*	0.309*	0.230*
OD KAB	0	1.541	0.064	0.004	0	0	0	0	0* (.)	1.588 [*] (0.073)	0.979 [*] (0)	1.869 ×10 ⁻⁸ *	7.78×1 0 ^{-10*}	6.097× 10 ^{-19*}
OD KA	0	0.293	0.012	0.000	0	0	0	0	0* (.)	2.022 [*] (0.048)	0.996 [*] (0)	1.242× 10 ^{-11*}	5.177× 10 ^{-13*}	2.934× 10 ^{-25*}
SV KABCO	25	9.301	1.043	3.109	2.688	25	1.109	2.788	0.014 [#] (0.032)	-4.310 (2.210)	0.747 [#] (0.622)	24.235	1.032	2.024
SV KABC	3	0.709	0.148	0.119	4.229	3	0.220	0.111	2.69×10 ^{-7*} (.)	-3.673 [*] (.)	0* (.)	3.000*	0.212*	0.106*
SV KAB	1	3.165	0.164	0.062	0.316	1	0.080	0.042	0.084*	0.313 [*] (.)	0* (.)	1.000*	0.080*	0.040*
SV KA	0	3.165	0.132	0.030	0	0	0	0	0* (.)	1.553 [*] (0.226)	1.000 [*] (0)	1.242× 10 ^{-11*}	5.177× 10 ^{-13*}	2.934× 10 ^{-25*}

Table 4-28: Calibration of the Ohio (2009–11) Safety Performance Functions Using the Minnesota (2009–11) Data, Four-Leg Signal-Controlled (4SG) Intersections

Improved Prediction Models for Crash Types and Crash Severities

⁺Calibration Factor; ^{*} Moore-Penrose inverse matrix used; [#] Not significant at 90th percentile confidence interval.

5 MODELS FOR URBAN AND SUBURBAN ARTERIALS

5.1 ROADWAY SEGMENTS

5.1.1 Estimation Data

The process of developing models for urban and suburban arterial road segments involved developing an initial set of models and then validating them with a second dataset obtained later. Following the successful validation, we combined the two datasets into a larger dataset to re-estimate the models.

We attempted three sets of models:

- 1. Base Condition SPFs—using only those sites meeting the HSM base conditions
- 2. Average Condition Exposure SPFs—using all available sites but only including exposure-related variables in the models
- 3. Average Condition Multi-Variable SPFs—using all available sites and including non-exposure variables where possible

The data for the initial models developed for urban and suburban arterial segments came from Ohio. The Ohio Department of Transportation (DOT) collected all of the data necessary for calibrating and applying the SPFs and CMFs in the current HSM chapter on urban and suburban arterials and made them available to the research team. No variables beyond the necessary ones were available in this database.

The Ohio data were provided for all site types in the HSM chapter, including the following:

- Two-lane undivided (2U)
- Two-lane plus two-way left-turn lane (3T)
- Four-lane divided (4D)
- Four-lane undivided (4U)
- Four-lane plus two-way left-turn lane (5T)

Table 5-1 shows the total mileage for each site type in Ohio and the sum of crashes by crash type in the data used for base condition models. Traffic volume and crash data for all sites include the years 2007–11. The crash data do not include intersection-related crashes. The Ohio DOT defines intersection crashes as any crash within 250 feet of an intersection. This definition has been adopted in part because of the perceived unreliability of the police reports in properly identifying intersection-related crashes. The queried crash types for the initial models included the following:

- Pedestrian-vehicle (PED)
- Bicycle-vehicle (BIKE)
- Multiple-vehicle driveway related (MVD)
- Rear end (RE)
- Head-on (HO)
- Right angle (ANG)
- Sideswipe same direction (SSD)
- Sideswipe opposite direction (SOD)
- Multiple-vehicle non-driveway other (MVN OTHER)
- Single vehicle (SV)

- Single-vehicle run-off-road (SV ROR)
- Single-vehicle fixed object (SV FIXEDOBJ)
- Single-vehicle other object (SV OTHEROBJ)
- Single-vehicle other (SV OTHER)
- Animal-related (ANIMAL)
- Nighttime (NIGHT)

In the course of developing the SPFs, some crash types were combined. Additionally, we decided not to include animal crashes, although they remain for the purposes of the data description, as they are informative with respect to crash type occurrence in Ohio, which provided the initial calibration data.

Table 5-2 shows the number of sites (N), minimum, maximum, mean, and standard deviation for the crash counts for the five-year period for each site type in Ohio for the base condition sites.

Table 5-3 shows the number of sites, minimum, maximum, mean, and standard deviation for the continuous explanatory variables for each site type in Ohio for the base condition sites. The explanatory variable definitions are identical to those in the current HSM urban and suburban arterial chapter.

Table 5-4 shows the total mileage for the discrete explanatory variables for each site type for base condition sites in Ohio. Again, the variable definitions are identical to those in the current HSM chapter.

Site	Length	DED	DIVE		DE		ANG	SSD	500	MVN	SV	POP		50	MO	SV	NICHT
Туре	(mi.)	PED	DIKE		RE	по	ANG	330	300	OTHER	50	KUK	ANIIVIAL	FU		OTHER	NIGHT
2U	447.256	25	10	370	1255	43	77	140	240	311	3582	1360	2112	1289	36	145	2516
3T	62.174	3	2	108	259	4	37	21	24	43	364	94	253	95	5	11	298
4D	160.595	17	5	134	1151	4	58	320	38	174	1611	488	1045	443	44	79	1368
4U	97.7	19	8	232	657	17	109	247	63	112	462	158	278	159	12	13	528
5T	74.99	12	8	396	1205	12	146	322	59	165	674	204	420	206	18	30	793

Improved Prediction Models for Crash Types and Crash Severities

Table 5-1: Ohio Segment Length and Crash Type Totals for Five-Year Period for Base Condition Sites (Urban/Suburban Arterial Segments)

Site Type	Stat.	PED	BIKE	MVD	RE	Ю	ANG	SSD	SOD	MVN OTHER	sv	SV ROR	ANIM AL	FO	мо	SV OTHER	Night
2U	N	760	760	760	760	760	760	760	760	760	760	760	760	760	760	760	760
2U	MIN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2U	MAX	2	1	13	66	2	7	7	8	8	109	36	81	32	3	8	78
2U	MEAN	0.03	0.01	0.49	1.65	0.06	0.10	0.18	0.32	0.41	4.71	1.79	2.78	1.70	0.05	0.19	3.31
2U	STD	0.19	0.11	1.30	4.21	0.25	0.47	0.62	0.88	1.01	8.75	3.84	5.79	3.64	0.25	0.60	6.28
3T	N	182	182	182	182	182	182	182	182	182	182	182	182	182	182	182	182
3T	MIN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3T	MAX	1	1	10	34	1	6	2	4	7	56	13	42	12	1	2	36
3Т	MEAN	0.02	0.01	0.59	1.42	0.02	0.20	0.12	0.13	0.24	2	0.52	1.39	0.52	0.03	0.06	1.64
3Т	STD	0.13	0.10	1.54	3.70	0.15	0.63	0.37	0.52	0.70	5.23	1.42	3.92	1.41	0.16	0.26	3.73
4D	N	358	358	358	358	358	358	358	358	358	358	358	358	358	358	358	358
4D	MIN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4D	MAX	2	2	19	172	1	7	28	4	19	98	37	61	36	4	8	85
4D	MEAN	0.05	0.01	0.37	3.22	0.01	0.16	0.89	0.11	0.49	4.50	1.36	2.92	1.24	0.12	0.22	3.82
4D	STD	0.24	0.14	1.64	13.98	0.11	0.67	2.64	0.44	1.62	10.76	3.51	7.32	3.19	0.45	0.86	9.13
4U	N	348	348	348	348	348	348	348	348	348	348	348	348	348	348	348	348
4U	MIN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4U	MAX	2	3	34	78	2	21	32	7	13	35	15	25	15	1	2	28
4U	MEAN	0.05	0.02	0.67	1.89	0.05	0.31	0.71	0.18	0.32	1.33	0.45	0.80	0.46	0.03	0.04	1.52
4U	STD	0.26	0.20	2.55	5.91	0.23	1.34	2.38	0.68	1.14	3.26	1.31	2.25	1.32	0.18	0.22	3.61
5T	N	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180
5T	MIN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5T	MAX	2	2	29	115	2	11	24	4	18	46	16	29	16	2	4	43
5T	MEAN	0.07	0.04	2.20	6.69	0.07	0.81	1.79	0.33	0.92	3.74	1.13	2.33	1.14	0.10	0.17	4.41
5T	STD	0.27	0.23	4.37	15.99	0.27	1.75	3.48	0.76	2.16	6.75	2.34	4.66	2.39	0.35	0.50	7.54

Table 5-2: Ohio Segment Crash Type Statistics for Five-Year Period for Base Condition Sites (Urban/Suburban Arterial Segments)

Site	Stat.	Length	AADT	Med	Parking	FODensity	Offset	Maj	Min	Maj	Min	Maj	Min	Other
Туре				Width	Prop	-	FO	Comm	Comm	Ind	Ind	Res	Res	Dwy
20	N	760	760	760	760	760	760	760	760	760	760	760	760	760
20	MIN	0.01	100	0	0	25	2	0	0	0	0	0	0	0
2U	MAX	6.29	23,028	0	0	75	20	10	41	6	28	4	193	5
2U	MEAN	0.59	6975	0	0	37.76	8.95	0.19	2.34	0.08	0.97	0.03	10.96	0.03
2U	STD	0.72	3978	0	0	12.95	3.80	0.77	4.70	0.48	2.63	0.26	20.03	0.24
3T	N	182	182	182	182	182	182	182	182	182	182	182	182	182
3T	MIN	0.02	1356	0	0	25	2	0	0	0	0	0	0	0
3T	MAX	3.29	23780	0	0	75	20	11	49	12	10	2	65	1
3T	MEAN	0.34	1022	0	0	41.87	8.11	0.98	5.24	0.29	0.41	0.05	4.82	0.02
3T	STD	0.44	4034	0	0	13.75	4.09	1.89	9.12	1.17	1.27	0.27	8.99	0.15
4D	N	358	358	358	358	358	358	358	358	358	358	358	358	358
4D	MIN	0.01	256	10	0	25	10	0	0	0	0	0	0	0
4D	MAX	4.81	45,874	100	0	75	30	33	47	8	5	2	64	2
4D	MEAN	0.45	14,384	33.27	0	34.32	21.63	0.42	1.11	0.14	0.13	0.01	0.87	0.02
4D	STD	0.67	8758	29.14	0	11.67	4.11	2.11	4.60	0.69	0.61	0.14	4.24	0.18
4U	N	348	348	348	348	348	348	348	348	348	348	348	348	348
4U	MIN	0.01	1150	0	0	25	2	0	0	0	0	0	0	0
4U	MAX	5.96	41,418	0	0	75	25	11	57	11	16	3	78	4
4U	MEAN	0.28	14,281	0	0	43.09	7.84	0.48	3.56	0.27	0.52	0.04	3.45	0.05
4U	STD	0.47	7350	0	0	13.84	4.54	1.32	7.05	0.93	1.93	0.25	9.06	0.34
5T	N	180	180	180	180	180	180	180	180	180	180	180	180	180
5T	MIN	0.01	5356	0	0	25	2	0	0	0	0	0	0	0
5T	MAX	2.91	50,553	0	0	75	20	23	75	9	16	2	46	2
5T	MEAN	0.42	19,422	0	0	38.97	8.47	2.23	8.09	0.42	0.52	0.07	3.05	0.08
5T	STD	0.51	83456	0	0	10.74	4.37	4.06	12.22	1.20	1.92	0.30	7.02	0.31

 Table 5-3: OH Segment Continuous Variable Statistics for Base Condition Sites (Urban/Suburban Arterial Segments)

Variable	2U	3T	4U	4D	5T
Lighting	Yes – 0.000	Yes – 0.000	Yes – 0.000	Yes – 0.000	Yes – 0.000
Lighting	No – 447.256	No – 62.174	No – 97.700	No – 160.595	No – 74.990
Automated Enforcement	Yes – 0.000	Yes – 0.000	Yes – 0.000	Yes – 0.000	Yes – 0.000
Automated Emorcement	No – 447.256	No – 62.174	No – 97.700	No – 160.595	No – 74.990
Spood Limit (mph)	<=30 - 5.693	<=30 - 2.939	<=30 - 7.844	<=30 - 1.151	<=30-0.498
speed Linit (inpli)	>30 - 441.563	>30 – 59.235	>30 - 89.856	>30 - 159.444	>30 - 74.492
Darking	Yes – 0.000	Yes – 0.000	Yes – 0.000	Yes – 0.000	Yes – 0.000
Parking	No – 447.256	No – 62.174	No – 97.700	No – 160.595	No – 74.990
Parking Type	None – 447.256	None – 62.174	None – 97.700	None - 160.595	None – 74.990

Table 5-4: OH Segment Categorical Variable Total Mileage (mi.) for Base Condition Sites (Urban/Suburban Arterial Segments)

5.1.2 Estimated Models

Documented in this section are the base condition models intended for use in the HSM predictive chapter for urban and suburban arterials. Models developed for all sites representing the average site conditions are found in Appendix A. These could be applied for network screening or other safety management tasks where models for average site conditions are desired.

The model development process involved using the Ohio data to estimate a set of initial models, which we subsequently validated where possible using a dataset that later became available from Minnesota. Following the validation, we combined the two datasets to re-estimate the final models.

We developed the initial models using the same base conditions as those in the current HSM chapter for urban and suburban arterials:

- No on-street parking
- No roadside fixed objects
- A 15-foot median width for divided roads
- No lighting
- No automated speed enforcement

The model predictions do not include intersection-related or animal crashes. The initial base condition models were estimated for the following crash types:

- Total (TOT)
- Multiple-vehicle driveway related (MVD)
- Multiple-vehicle non-driveway related (MVN)
- Rear end (RE)
- Sideswipe same direction (SSD)
- Head-on plus sideswipe opposite direction (HO+SOD)
- Multiple-vehicle non-driveway other (MVN OTHER)
- Single-vehicle (SV)
- Nighttime (NIGHT)

To develop the base condition SPFs, we used only sites with no lighting or parking or automated enforcement. Because no sites had zero roadside fixed objects and few divided roadways had a median width of exactly 15 feet, these variables were included in the models only if considered appropriate for that crash type and if the variable was statistically significant in the model and with the expected direction of effect. For TOT, MVD, SV, and NIGHT crashes, the number of driveways was also directly included in the models where warranted. If the variables for fixed objects or median width were included, they would have been set to the base condition for application. The number of driveways in a segment should be entered in those models where it is included—that is, there is no base condition for the number of driveways in a segment.

Note that some parameter estimates are not statistically significant at the 95 percent confidence level but are consistent across site types and/or crash types in the direction of effect and magnitude. In these cases, we deemed the estimates acceptable.

For TOT, MVD, and NIGHT crashes, parameter estimates for driveway count variables were inconsistent in their levels of statistical significance and whether one driveway type was associated with fewer or more crashes. In light of these findings, we considered two options. Option 1 used the same driveway definitions and model form for considering driveways as in the current HSM chapter. Option 2 used the total driveway density (driveways per mile) as an alternate variable. For TOT and NIGHT crashes, the model form for Option 1 did not include length, as the inclusion of this variable created poor parameter estimates for the relationship between average annual daily traffic (AADT) and driveways.

Table 5-5 to Table 5-16 document all initial base models developed using the Ohio data. The model form is provided below each table for each crash type, along with the parameter estimates and standard error (in brackets). For most site type/crash type combinations, a model was successfully calibrated; the tables note where they were not.

5.1.3 Validation of Models

5.1.3.1 Initial model validation

We validated the initial models that used Ohio data with data from Minnesota covering the years 2010– 14. The sample size of crashes was not large enough, however, to validate all crash type models. Table 5-17 provides the segment length and crash type totals for the Minnesota base condition sites. For validation, we calculated the calibration factors for each SPF using the current HSM procedure, which is to calculate a simple ratio of the sum of observed crashes divided by the sum of predicted crashes prior to calibration. We used "The Calibrator," a spreadsheet tool developed by the Federal Highway Administration (FHWA), for the validation exercise.

Site Type	a1	b1	a2	b2	е	f	g	h	j	k	I	dispersion
211	-10.4000	1.0210	-10.4800	0.6210	21.3300	5.6580	47.6600	26.5800	15.3400	7.0580	41.5400	0.6276
20	(1.6710)	(0.1885)	(1.6700)	(0.1872)	(13.8400)	(3.6670)	(18.6600)	(12.8800)	(18.0800)	(3.6000)	(20.4400)	(0.0471)
эт	-11.8600	1.1340	-11.8600	0.6005	33.5800	27.1700	28.6500	11.9700	25.6500	8.8680	-1.3600	0.6635
51	(4.5250)	(0.4928)	(3.7500)	(0.4125)	(21.3500)	(16.8600)	(22.4100)	(19.5800)	(28.1000)	(9.306)	(31.7500)	(0.1085)
411	-13.1800	1.2010	-19.9900	1.5070	39.4400	26.8600	24.5800	28.9600	18.3300	13.7500	-2.1840	0.4030
40	(1.7260)	(0.1808)	(3.0130)	(0.3086)	(19.2000)	(13.6100)	(18.6800)	(16.1000)	(25.4600)	(8.4100)	(26.0900)	(0.0481)
40	-17.7500	1.8030	-20.7000	1.6240	24.0600	18.8500	23.9900	26.0800	15.5500	24.5300	18.9500	0.4158
40	(1.6420)	(0.1742)	(5.1830)	(0.5345)	(19.6500)	(15.5800)	(21.4900)	(23.1600)	(29.7900)	(16.5300)	(28.0700)	(0.0444)
ст	-23.2900	2.2750	-11.4400	0.6492	37.0800	30.4900	34.1100	11.4100	2.3670	9.3020	0.0370	0.5754
51	(4.2650)	(0.4321)	(2.0540)	(0.2119)	(17.5300)	(14.6400)	(17.4900)	(19.9800)	(29.8500)	(8.1580)	(30.6800)	(0.0749)

Table 5-5: Total (TOT) for Base Conditions Option 1 (Urban/Suburban Arterial Segments)

Crashes per year = exp(a1)(AADT)^{b1}+

exp(a2)(AADT)^{b2}(e*MajComm+f*MinComm+g*MajInd+h*MinInd+j*MajRes+k*MinRes+l*OtherDwy)

Dispersion is modeled as a constant

 Table 5-6: Total (TOT) for Base Conditions Option 2 (Urban/Suburban Arterial Segments)

	(
Site Type	Alpha1	Beta1	Alpha2	Beta2	Beta3	Beta4	Beta5
211	-6.0860	0.7511	-0.5430	-0.6938	n/a	2/2	n/a
20	(0.5892)	(0.0670)	(0.0919)	(0.0820)	n/a	II/d	n/a
эт	-10.2221	1.1790	-0.3919	-0.2997	n/a	2/2	n/a
3T	(2.2704)	(0.2454)	(0.2694)	(0.1898)	n/a	II/d	n/a
411	-14.6786	1.6114	-0.0053	-0.4560	0.0089	2/2	n/a
40	(1.7359)	(0.1817)	(0.1939)	(0.1231)	(0.0030)	n/a	n/a
40	-11.9469	1.3272	-0.6179	-0.5502	0.0182	2/2	-0.0054
4D	(1.1524)	(0.1179)	(0.1560)	(0.1208)	(0.0050)	II/d	(0.0032)
ET	-11.6621	1.3068	-0.7018	-0.7834	n/a	0.0162	n/2
51	(1.7458)	(0.1767)	(0.2128)	(0.1490)	n/a	(0.0096)	n/a

Crashes per year = (length)exp^(Alpha1)AADT^(Beta1) exp^(Beta3*dwydens++Beta4*fodensity+Beta5*medwid)

		1 \ 1			0 /	
Site Type	Alpha1	Beta1	Alpha2	Beta2	Beta3	Beta4
211	-12.0774	1.3440	-0.5669	-0.7129	0.0050	nla
20	(0.7334)	(0.0839)	(0.1097)	(0.0950)	(0.0040)	II/d
ЭТ	-14.9031	1.6288	-0.2586	-0.4172	nla	nla
3T	(2.8001)	(0.3017)	(0.2970)	(0.2068)	II/d	II/d
411	-18.2639	1.9781	-0.1077	-0.6026	nla	nla
40	(2.0110)	(0.2096)	(0.1961)	(0.1195)	II/d	II/a
40	-16.2885	1.6796	-0.4327	-0.6772	0.0223	-0.0053
4D	(1.4294)	(0.1388)	(0.1634)	(0.1221)	(0.0079)	(0.0039)
57	-14.0029	1.5117	-0.6424	-0.8478	0.0208	n/2
51	(1.8790)	(0.1899)	(0.2155)	(0.1544)	(0.0104)	II/d

Table 5-7: Multiple-Vehicle Non-Driveway (MVN) for Base Conditions (Urban/Suburban Arterial Segments)

Crashes per year = (length)exp^(Alpha1)AADT^(Beta1) exp^(Beta3*fodensity+Beta4*medwid)

The dispersion parameter is modeled as: Dispersion parameter = exp^(Alpha2)(length)^(Beta2)

Table 5-8: Rear End (RE) for Base Conditions (Urban/Suburban Arterial Segments)

Site Type	Alpha1	Beta1	Alpha2	Beta2	Beta3	Beta4	
211	-16.9150	1.8217	-0.2968	-0.6680	nla	2/2	
20	(1.0174)	(0.1136)	(0.1320)	(0.1181)	II/a	II/d	
эт	-19.8717	2.1175	0.2335	-0.2750	nla	2/2	
51	(3.7237)	(0.4000)	(0.2991)	(0.2398)	II/d	11/ d	
411	-20.3644	2.1262	0.1069	-0.6057	2/2	nla	
40	(2.3837)	(0.2471)	(0.2222)	(0.1436)	II/d	II/d	
40	-23.9555	2.4546	0.1034	-0.5155	n/2	n/2	
40	(2.0377)	(0.2086)	(0.1749)	(0.1390)	II/d	II/d	
C.T.	-18.0852	1.9245	-0.1383	-0.6228	n/2	n/2	
51	(2.3200)	(0.2344)	(0.2344)	(0.1740)	II/d	n/a	

Crashes per year = (length)exp^(Alpha1)AADT^(Beta1) exp^(Beta3*fodensity+Beta4*medwid)

		(**** / *** * *** ***			,,		
Site Type	Alpha1	Beta1	Alpha2	Beta2	Beta3	Beta4	
211	-14.9454	1.3668	0.3567	-0.3906	n/2	n/a	
20	(2.0400)	(0.2269)	(0.3159)	(0.3335)	II/d	II/d	
эт	-12.7872	1.0883	-1.0868	-1.0000	n/2	n/a	
51	(6.3104)	(0.6755)	(1.1962)	(n/a)	n/a	n/a	
411	-21.7028	2.1713	0.0021	-0.7319	n/2	n/a	
40	(3.1316)	(0.3240)	(0.3140)	(0.2117)	II/d	11/ d	
40	-10.8456	1.0164	-0.4498	-0.6528	n/2	n/a	
40	(1.6374)	(0.1676)	(0.2638)	(0.2570)	II/d	II/d	
ст	-13.8498	1.3813	-0.4941	-0.3073	n/2	n/a	
51	(2.4777)	(0.2499)	(0.3007)	(0.2718)	II/d	n/a	

Table 5-9: Sideswipe-Same-Direction (SSD) for Base Conditions (Urban/Suburban Arterial Segments)

Crashes per year = (length)exp^(Alpha1)AADT^(Beta1) exp^(Beta3*fodensity+Beta4*medwid)

The dispersion parameter is modeled as: Dispersion parameter = exp^(Alpha2)(length)^(Beta2)

Site Type	Alpha1	Beta1	Alpha2	Beta2	Beta3	Beta4	
211	-8.2884	0.7028	0.0027	-0.4152	nla	nla	
20	(1.3195)	(0.1488)	(0.2386)	(0.3140)	II/a	11/ d	
эт	-15.5567	1.4489	-0.5288	-2.8313	2/2	n /n	
31	(6.9161)	(0.7412)	(1.5562)	(1.1828)	n/a	II/ d	
4U			No model	calibrated			
40	-10.7128	0.7981	0.0622	-1.2091	2/2	n /n	
40	(3.3027)	(0.3360)	(0.7457)	(0.6002)	n/a	n/a	
ГТ	-10.3196	0.8767	-0.4212	-0.0014	2/2	n/n	
51	(3.6247)	(0.3658)	(0.5618)	(0.7216)	n/a	n/a	

Table 5-10: Head-On + Sideswipe-Opposite-Direction (HO+SOD) for Base Conditions (Urban/Suburban Arterial Segments)

Crashes per year = (length)exp^(Alpha1)AADT^(Beta1) exp^(Beta3*fodensity+Beta4*medwid)

· · · · · · · · · · · · · · · · · · ·						
Site Type	Alpha1	Beta1	Alpha2	Beta2	Beta3	Beta4
211	-9.9584	0.8413	-0.5762	-1.4801	0.0153	n/2
20	(1.2413)	(0.1391)	(0.3268)	(0.2629)	(0.0063)	II/ d
ЭТ	-8.9257	0.8182	-1.0071	-0.1620	n/2	n/2
3T	(3.4592)	(0.3723)	(0.7971)	(0.7198)	II/d	II/ d
411	-16.1223	1.3978	0.4561	-0.3153	0.0277	n/2
40	(3.1953)	(0.3222)	(0.3452)	(0.3047)	(0.0117)	II/ d
40	-11.2681	0.9584	-0.5306	-0.7167	0.0199	-0.0109
40	(2.1597)	(0.2055)	(0.3606)	(0.3160)	(0.0111)	(0.0065)
ст	-13.4898	1.1930	-0.6420	-0.6885	0.0221	n/2
51	(2.9205)	(0.2901)	(0.4135)	(0.4026)	(0.0121)	II/a

 Table 5-11: Multiple-Vehicle Non-Driveway Other (MVN OTHER) for Base Conditions (Urban/Suburban Arterial Segments)

Crashes per year = (length)exp^(Alpha1)AADT^(Beta1) exp^(Beta3*fodensity+Beta4*medwid)

The dispersion parameter is modeled as: Dispersion parameter = exp^(Alpha2)(length)^(Beta2)

 Table 5-12: Single-Vehicle (SV) for Base Conditions (Urban/Suburban Arterial Segments)

Site Type	Alpha1	Beta1	Alpha2	Beta2	Beta3	Beta4				
2U		No model calibrated								
эт	-4.0996	0.2682	0.2009	0.5802	n/n	n/n				
51	(3.7906)	(0.4107)	(0.5641)	(0.7384)	II/d	li/d				
411	-7.5399	0.6261	-0.5967	-1.1117		nla				
40	(2.8850)	(0.3014)	(0.6644)	(0.5442)	II/d	li/d				
40	-7.6387	0.6832	-0.7085	-0.5342						
4D	(1.4666)	(0.1514)	(0.2950)	(0.3962)	II/d	n/a				
FT	-2.8316	0.1865	-0.0347	-0.7949	n/n	n/a				
51	(3.1881)	(0.3242)	(0.3416)	(0.3089)	n/a					

Crashes per year = (length)exp^(Alpha1)AADT^(Beta1) exp^(Beta3*fodensity+Beta4*medwid)

The dispersion parameter is modeled as: Dispersion parameter = exp^(Alpha2)(length)^{(Beta2}

72

Site Type	a1	b1	a2	b2	е	f	g	h	j	k	I	dispersion
211	-8.184	0.5827	-9.2390	0.2255	19.360	3.3640	50.5000	31.4600	15.3100	10.1500	32.5600	0.6245
20	(1.176)	(0.131)	(1.456)	(0.161)	(17.170)	(4.3750)	(21.560)	(16.610)	(22.270)	(5.9840)	(22.720)	(0.0938)
3T		No model calibrated										
4U						No m	nodel					
40	-18.98	1.720	-20.150	1.3740	30.350	9.9470	19.8100	13.1600	14.5500	27.2200	28.7600	0.4411
4D	(2.427)	(0.252)	(6.542)	(0.664)	(20.480)	(13.090)	(20.280)	(22.960)	(30.460)	(17.700)	(28.4000)	(0.0923)
5T	No model calibrated											
51		No model calibrated										

Crashes per year = $exp(a1)(AADT)^{b1} + exp(a2)(AADT)^{b2}(e^{MajComm+f^{MinComm+g^{MajInd+h^{MinInd+j^{MajRes+k^{MinRes+l^{O}CherDwy}}})$ Dispersion is modeled as a constant

Table 5-14: Nighttime (NIGHT) for Base Conditions (Option 2) (Urban/Suburban Arterial Segments)

Site Type	Alpha1	Beta1	Alpha2	Beta2	Beta3	Beta4	Beta5	
211	-4.5003	0.3562	-0.2500	-0.7635	nla	n/a	n/a	
20	(0.9316)	(0.1060)	(0.1657)	(0.2024)	n/a	II/a	II/ d	
эт	-9.8418	0.8976	-0.2694	-0.3113	nla	n/a	. / .	
51	(3.7771)	(0.4063)	(0.6161)	(0.4739)	n/a	II/a	II/ a	
411	-15.4899 1.5044 -0.1265 -0.7128	nla	n/a	2/2				
40	(2.7560)	(0.2859)	(0.3565)	(0.2904)	n/a	II/a	n/a	
40	-10.5500	1.0089	-0.5876	-0.5028	nla	n/a	-0.0119	
40	(1.7363)	(0.1750)	(0.2844)	(0.2706)	n/a	n/a	(0.0051)	
FT	-12.0353	1.1821	-0.8642	-0.7848	nla	n/a	nla	
51	(2.2854)	(0.2302)	(0.3749)	(0.2764)	11/d	11/d	11/d	

Crashes per year = (length)exp^(Alpha1)AADT^(Beta1) exp^(Beta3*dwydens++Beta4*fodensity+Beta5*medwid)

Site Type Alpha1 dispersion Beta1 е f g h k Т -14.1100 0.7840 41.2600 18.2400 29.5900 21.2900 17.0300 24.9200 6.6180 0.8656 2U (3.6350)(0.3716) (18.2600)(9.5630) (18.4800)(12.1000)(14.9600) (4.0100)(20.2400)(0.1913)-11.1600 0.4170 33.5600 25.6400 37.4600 15.9200 32.1400 9.1550 -2.9530 0.5281 3T (14.0800) (4.4080)(0.4767)(13.9300)(7.0810)(30.8800)(18.0600)(19.5500)(24.3300)(0.1680)4U No model calibrated -15.8200 0.8799 32.5700 19.4700 19.4100 10.8000 20.6400 32.4000 0.4986 30.0500 4D (3.8660) (0.3761)(17.3800)(11.5200)(15.9700)(16.8000)(28.9100)(12.8300)(18.5600)(0.1910)-13.7000 0.7159 0.4131 30.6700 30.7600 15.1000 3.1770 4.2310 -0.2437 0.7528 5T (2.4940) (14.5400) (20.9200) (29.4200) (0.2525)(17.3400)(17.5500)(30.9100)(0.1609)(3.9390)

 Table 5-15: Multi-Vehicle Driveway (MVD) for Base Conditions (Option 1) (Urban/Suburban Arterial Segments)

Crashes/year =exp(Alpha1)AADT^{Beta1}(e*MajComm+f*MinComm+g*MajInd+h*MinInd+j*MajRes+k*MinRes+l*OtherDwy) Dispersion is held constant.

Site Type	Alpha1	Beta1	Alpha2	Beta2	Beta3	Beta4	Beta5
2U	-12.6511	1.1705	0.1267	-0.7488	0.0165	n/2	n/2
	(1.4075)	(0.1567)	(0.1841)	(0.1874)	(0.0040)	II/ d	11/d
эт	-8.9552	0.8526	0.5432	-0.1579	0.0022	n/2	n/2
51	(4.2685)	(0.4686)	(0.3483)	(0.3117)	(0.0076)	II/ d	11/d
411	-18.4926	1.7592	0.3468	-0.6666	0.0199	n/2	n/2
40	(3.2011)	(0.3312)	(0.2954)	(0.2208)	(0.0057)	II/ d	11/d
40	-11.0400	0.9786	0.4003	-0.7067	0.0567	n/2	-0.0558
40	(3.3545)	(0.3428)	(0.3425)	(0.2770)	(0.0113)	II/ d	(0.0145)
ст	-11.7476	1.0318	-0.5609	-1.1911	0.0131	0.0298	n/2
51	(2.5826)	(0.2599)	(0.2950)	(0.2496)	(0.0070)	(0.0148)	11/d

Crashes per year = (length)exp^(Alpha1)AADT^(Beta1) exp^(Beta3*dwydens++Beta4*fodensity+Beta5*medwid)

Facility Type	No. of segments	No. of miles	Average AADT	тот	Multi- Veh Driveway	Rear End	Head-On + SOD	SSD	Multi- Veh Other	Single- Vehicle	Night
2U	236	33.86	9,511	320	21	118	25	16	36	115	69
3T	63	7.23	10,841	76	4	39	6	7	17	7	18
4D	92	14.95	22,150	308	4	182	15	31	25	57	63
4U	113	11.72	10,386	160	15	53	9	24	41	22	29
5T	15	1.60	15,753	20	2	6	2	2	6	2	3

Improved Prediction Models for Crash Types and Crash Severities

Table 5-17: MN Segment Length and Crash Type Totals for 5 Year Period for Base Condition Sites (Urban/Suburban Arterial Segments)

Table 5-18 to Table 5-21 provide goodness-of-fit measures for the initial base condition models validated with the Minnesota data. The cumulative residuals (CURE) plot measures are for CURE plots using the predicted number of crashes on the x-axis. Only site/crash types with a reasonable number of crashes (approximately 100) are included.

The interpretation of the goodness-of-fit measures is challenging, since the implications can vary significantly depending on the measure used. Some results are not promising but not surprising, and quite typical when assessing the transferability of SPFs to other jurisdictions. In general, the calibrated dispersion parameters are less than 2, indicating a reasonable prediction accuracy, and the values of MAD are not unreasonable. The modified R² and CURE plot statistics are more inconsistent across site and crash types. Note, though, that such biases within ranges of model predictions are not uncommon. On the whole, we conclude that the validation exercise does not provide evidence that the chosen model forms are not working.

For the models for total crashes where we investigated two options for handling driveway counts, the results indicate that Option 2 (summing all driveways together and dividing by segment length) was more successful overall. We applied this model form for developing the final models.

Crash Type	Observed Crashes	Calibration Factor (coefficient of variation)	Dispersion	MAD	Modified R ²	CURE max dev	CURE % dev
TOT Option 1	320	1.02 (0.15)	1.27	1.33	0.28	65.52	71
TOT Option 2	320	0.92 (0.14)	1.08	1.31	0.04	58.83	16
MVN	195	0.64 (0.19)	1.41	0.96	0.00	95.17	97
RE	118	0.71 (0.23)	1.82	0.67	0.00	68.20	96

 Table 5-18: Validation of Initial 2U Base Condition Models

Table 5-19: Validation of 3T Base Condition Models

Crash Type	Observed Crashes	Calibration Factor (coefficient of variation)	Dispersion	MAD	Modified R ²	CURE max dev	CURE % dev
TOT Option 1	76	1.34 (0.18)	0.46	0.97	0.51	29.49	86
TOT Option 2	76	1.03 (0.17)	0.34	0.97	0.61	26.55	89
MVN	69	1.50 (0.17)	0.32	0.87	0.64	23.29	89

Table 5-20: Validation of 4D Base Condition Models

Crash Type	Observed Crashes	Calibration Factor (coefficient of variation)	Dispersion	MAD	Modified R ²	CURE max dev	CURE % dev
TOT Option 1	308	2.07 (0.27)	1.21	3.02	0.28	103.08	86
TOT Option 2	308	1.13 (0.22)	0.75	2.52	0.40	88.49	92
MVN	253	1.07 (0.30)	1.16	2.56	0.10	63.49	85

Crash Type	Observed Crashes	Calibration Factor (coefficient of variation)	Dispersion	MAD	Modified R ²	CURE max dev	CURE % dev
TOT Option 1	160	1.57 (0.25)	1.79	1.37	0.10	66.36	93
TOT Option 2	160	1.54 (0.21)	1.17	1.34	0.02	72.04	95
MVN	127	2.21 (0.24)	1.46	1.20	0.00	61.90	96

5.1.3.2 Final Models

Given the reasonable results of the validation exercise and the paucity of the initial model estimation data, we re-estimated all base condition models using the combined Ohio and Minnesota base condition sites. We re-estimated all initial crash type models, as well as estimating models by crash severity (all crash types combined).

As with the initial base model development, we used only sites with no lighting, parking, or automated enforcement to develop the base condition SPFs. Because no sites had zero roadside fixed objects and few divided roadways had a median width of exactly 15 feet, we included these variables in the models only if we considered them appropriate for the crash type, and if the variable was statistically significant in the model and with the expected direction of effect. If we included a variable, we would set it to the base condition for application. We attempted to include driveway density in all models developed, acknowledging that driveway presence might affect different crash types in different ways. We entered the number of driveways in a segment in those models in which it was included—that is, where there was no base condition for the number of driveways in a segment.

Final base condition models were calibrated for the following crash types (as defined previously):

•	ТОТ	•	КА	•	SSD	•	SV
•	КАВС	•	MVN	•	HO+SOD	•	NIGHT
•	КАВ	•	RE	•	MVN OTHER	•	MVD

Table 5-22 provides the ranges of the AADT and the number of driveways per mile (DWYDENS) variables by site type for the combined Ohio and Minnesota data that we used to estimate the base condition models. Table 5-23 to Table 5-34 show the estimated coefficients for the final models.

Site Type	AADT	DWYDENS				
2U	100 to 23,028	0.00 to 154.76				
ЗТ	1,356 to 23,780	0.00 to 150.00				
4U	1,150 to 41,418	0.00 to 320.00				
4D	256 to 52,830	0.00 to 170.21				
5T	5.356 to 50.553	0.00 to 115.38				

Table 5-22: Range of Base Model Variables for Final Urban/Suburban Segment Mod
--

Site Type	Alpha1	Ohio	Beta1	Alpha2	Beta2	Beta3	Beta4	Beta5
2U	-6.2667	0.0275	0.7566	-0.5377	-0.5136	0.0038	-	-
	(0.5588)	(0.1142)	(0.0605)	(0.0933)	(0.0707)	(0.0019)		
3T	-11.6510	0.0161	1.3322	-0.4150	-0.1955	-	-	-
	(2.0472)	(0.2024)	(0.2182)	(0.2627)	(0.1712)			
4U	-13.9903	-0.5241	1.5943	0.0671	-0.2778	0.0087	-	-
	(1.5040)	(0.1935)	(0.1624)	(0.1891)	(0.1056)	(0.0023)		
4D	-11.0228	-0.1656	1.2544	-0.6630	-0.4471	0.0168	-	-0.0072
	(1.0556)	(0.1557)	(0.1043)	(0.1534)	(0.1051)	(0.0045)		(0.0029)
5T	-12.0014	0.6171	1.2897	-0.7017	-0.7813	-	0.0132	-
	(1.7516)	(0.5269)	(0.1764)	(0.2111)	(0.1451)		(0.0085)	

Table J-2J. Total for base conditions complied bata (orban/Juburban Artena) Jeginents	or Base Conditions Combined Data (Urban/Suburban Arteria	Segments)
---	--	-----------

Crashes per year = (length)exp^(Alpha1+Ohio)AADT^(Beta1) exp^(Beta3*dwydens++Beta4*fodensity+Beta5*medwid)

The dispersion parameter is modeled as: Dispersion parameter = exp^(Alpha2)(length)^(Beta2)

Table 5-24. RADC for dase conditions complied Data (Orban/Suburban Artena) segments	BC for Base Conditions Combined Data (Urban/Suburban Arterial S	egments
---	---	---------

Site Type	Alpha1	Ohio	Beta1	Alpha2	Beta2	Beta3	Beta4	Beta5
2U	-5.7643	-0.0920	0.6064	-0.4355	-0.5853	-	-	-
	(0.6944)	(0.1450)	(0.0754)	(0.1201)	(0.0992)			
3T	-13.1435	-0.2039	1.3799	-0.1284	-0.0128	-	-	-
	(2.8117)	(0.2670)	(0.3002)	(0.3599)	(0.2931)			
4U	-15.1227	-0.5914	1.6901	-0.5771	-0.6791	0.0046	-0.0184	-
	(1.8518)	(0.2498)	(0.1997)	(0.2726)	(0.1551)	(0.0029)	(0.0054)	
4D	-10.6728	-0.3482	1.1237	-0.7472	-0.5053	0.0103	-	-0.0110
	(1.2521)	(0.1812)	(0.1230)	(0.2009)	(0.1587)	(0.0055)		(0.0037)
5T	-13.3013	0.2684	1.3873	-0.7945	-0.8925	-	-	-
	(1.9432)	(0.6352)	(0.1944)	(0.2605)	(0.1924)			

Crashes per year = (length)exp^(Alpha1+Ohio)AADT^(Beta1) exp^(Beta3*dwydens++Beta4*fodensity+Beta5*medwid) The dispersion parameter is modeled as: Dispersion parameter = exp^(Alpha2)(length)^(Beta2)

Table 5-25: KAB for Base Conditions Combined Data (Urban/Suburban Arterial Segments)
---	-----------------------------------

Site Type	Alpha1	Ohio	Beta1	Alpha2	Beta2	Beta3	Beta4	Beta5
2U	-5.6569	0.5840	0.4691	-0.2961	-0.6501	-	-	-
	(0.8238)	(0.2042)	(0.0883)	(0.1357)	(0.1446)			
3T	-14.3398	-0.0055	1.4226	-0.2135	0.0325	-	-	-
	(3.5217)	(0.3474)	(0.3751)	(0.4482)	(0.4309)			
4U	-15.5357	0.0737	1.5342	-0.4129	-0.6175	-	-	-
	(2.2757)	(0.3448)	(0.2437)	(0.3578)	(0.2534)			
4D	-11.2921	0.1675	1.0759	-0.8647	-0.6098	0.0092	-	-0.0074
	(1.4475)	(0.2328)	(0.1405)	(0.2650)	(0.2221)	(0.0062)		(0.0042)
5T	-14.9040	0.9934	1.4140	-0.6481	-0.6560	-	-	-
	(2.3332)	(0.8272)	(0.2278)	(0.2976)	(0.2486)			

Crashes per year = (length)exp^(Alpha1+Ohio)AADT^(Beta1) exp^(Beta3*dwydens++Beta4*fodensity+Beta5*medwid)

The dispersion parameter is modeled as: Dispersion parameter = $exp^{(Alpha2)}(length)^{(Beta2)}$

For KA crashes, no model was calibrated for four-lane divided (4D) or four-lane plus two-way left-turnlane (5T) sites. For these, the appropriate proportion of KA crashes could be applied as a multiplicative factor with the TOT, KABC, or KAB model. Alternatively, the KA model for average conditions presented in the appendices could be applied.

Site Type	Alpha1	Ohio	Beta1	Alpha2	Beta2	Beta3	Beta4	Beta5
2U	-6.1199	0.6025	0.3677	-0.2131	-0.7058			
	(1.3024)	(0.3516)	(0.1387)	(0.2868)	(0.3038)	-	-	_
3T	-20.3972	0.4340	1.8815	0.7946	-0.5334			
	(7.7770)	(0.8545)	(0.8258)	(0.6013)	(0.6767)	-	-	-
4U	-17.4579	1.4088	1.4692	-1.3176	-1.7818			
	(3.8002)	(1.1221)	(0.4016)	(1.2690)	(0.8893)	-	-	-
4D	-	-	-	-	-	-	-	-
5T	-	-	-	-	-	-	-	-

 Table 5-26: KA for Base Conditions Combined Data (Urban/Suburban Arterial Segments)

Crashes per year = (length)exp^(Alpha1+Ohio)AADT^(Beta1) exp^(Beta3*dwydens++Beta4*fodensity+Beta5*medwid) The dispersion parameter is modeled as: Dispersion parameter = exp^(Alpha2)(length)^(Beta2)

Table J-27. NIVINIO Dase conditions combined Data (Orban/Suburban Artena) Segment

Site Type	Alpha1	Ohio	Beta1	Alpha2	Beta2	Beta3	Beta4	Beta5
2U	-13.1934	0.0825	1.4403	-0.6182	-0.5753	0.0069		
	(0.7523)	(0.1329)	(0.0802)	(0.1179)	(0.0849)	(0.0020)	-	-
3T	-15.4009	-0.3760	1.7234	-0.2706	-0.2234			
	(2.4601)	(0.2229)	(0.2626)	(0.2918)	(0.1849)	-	-	-
4U	-16.3961	-0.8820	1.8756	-0.0044	-0.3995		-	
	(1.7182)	(0.2158)	(0.1866)	(0.1954)	(0.1068)	-		-
4D	-14.9113	-0.2680	1.5965	-0.4376	-0.4917		0.0112	-0.0059
	(1.3107)	(0.1919)	(0.1269)	(0.1604)	(0.1092)	-	(0.0046)	(0.0035)
5T	-15.6856	0.6385	1.6077	-0.6279	-0.8216		0.0177	
	(1.9567)	(0.5866)	(0.1925)	(0.2182)	(0.1552)	-	(0.0096)	-

Crashes per year = (length)exp^(Alpha1+Ohio)AADT^(Beta1) exp^(Beta3*dwydens++Beta4*fodensity+Beta5*medwid) The dispersion parameter is modeled as: Dispersion parameter = exp^(Alpha2)(length)^(Beta2)

Table 5-28: RE for Base Conditions Combined	Data (Urban/Suburban Arterial Segments)
---	---

Site Type	Alpha1	Ohio	Beta1	Alpha2	Beta2	Beta3	Beta4	Beta5
2U	-17.2835	0.1802	1.8433	-0.2692	-0.5029	-	-	-
	(1.0139)	(0.1628)	(0.1077)	(0.1303)	(0.0957)			
3T	-19.7152	-0.2954	2.1326	0.1870	-0.2297	-	-	-
	(3.3256)	(0.2896)	(0.3546)	(0.2908)	(0.1936)			
4U	-19.9318	-0.6741	2.1519	0.1871	-0.3413	-	-	-
	(2.0767)	(0.2526)	(0.2226)	(0.2237)	(0.1299)			
4D	-22.5573	-0.1243	2.3241	0.0222	-0.5113	-	-	-
	(1.8509)	(0.2366)	(0.1842)	(0.1695)	(0.1182)			
5T	-18.8071	0.7287	1.9239	-0.1217	-0.5654	-	-	-
	(2.3175)	(0.6390)	(0.2318)	(0.2342)	(0.1705)			

Crashes per year = (length)exp^(Alpha1+Ohio)AADT^(Beta1) exp^(Beta3*dwydens++Beta4*fodensity+Beta5*medwid)

For SSD crashes, a base condition model was not successfully calibrated for 3T sites. We calibrated the recommended model for 3T sites by using all sites and representing average conditions.

Site Type	Alpha1	Ohio	Beta1	Alpha2	Beta2	Beta3	Beta4	Beta5
2U	-14.1461	-0.1494	1.2943	0.4303	-0.4248	-	-	-
	(1.9684)	(0.3208)	(0.2097)	(0.2930)	(0.2587)			
3T	-14.4915	-0.7704	1.3985	-0.5623	-0.7902	-	-	-
	(3.2424)	(0.3049)	(0.3481)	(0.5474)	(0.3238)			
4U	-20.2134	-0.7956	2.0999	0.0841	-0.5012	-	-	-
	(2.7017)	(0.3278)	(0.2903)	(0.3067)	(0.1882)			
4D	-10.1287	0.1939	0.9255	-0.3942	0	-	-	-
	(1.5856)	(0.2382)	(0.1557)	(0.2456)				
5T	-14.7441	0.7764	1.3932	-0.4866	-0.2846	-	-	-
	(2.5240)	(0.7739)	(0.2492)	(0.3002)	(0.2685)			

 Table 5-29: SSD for Base Conditions Combined Data (Urban/Suburban Arterial Segments)

Crashes per year = (length)exp^(Alpha1+Ohio)AADT^(Beta1) exp^(Beta3*dwydens++Beta4*fodensity+Beta5*medwid)

The dispersion parameter is modeled as: Dispersion parameter = exp^(Alpha2)(length)^(Beta2)

For SOD+HO crashes, a base condition model was not successfully calibrated for 4D sites. We calibrated the recommended model for 4D sites by using all sites and representing average conditions.

Site Type	Alpha1	Ohio	Beta1	Alpha2	Beta2	Beta3	Beta4	Beta5		
2U	-8.1147	-0.0461	0.6884	-0.0349	-0.4037	-	-	-		
	(1.2688)	(0.2454)	(0.1363)	(0.2264)	(0.2497)					
3T	-18.2308	-0.7286	1.7639	-0.6224	0.4519	-	-	-		
	(6.0061)	(0.4845)	(0.6379)	(1.1807)	(1.2972)					
4U	-12.2573	-0.4853	1.1343	-0.4689	-0.4739	-	-	-		
	(2.8768)	(0.4100)	(0.3100)	(0.5951)	(0.4805)					
4D	-8.5679	-1.0946	0.7000	-0.2926	-0.5178	-	-	-		
	(2.0962)	(0.2278)	(0.2100)	(0.5993)	(0.3654)					
5T	-9.6385	-0.5459	0.8631	-0.4456	0	-	-	-		
	(3.4905)	(0.7628)	(0.3551)	(0.5536)						

Table 5-30: SOD+HO for Base Conditions Combined Data (Urban/Suburban Arterial Segments)

Crashes per year = (length)exp^(Alpha1+Ohio)AADT^(Beta1) exp^(Beta3*dwydens++Beta4*fodensity+Beta5*medwid)

Site Type	Alpha1	Ohio	Beta1	Alpha2	Beta2	Beta3	Beta4	Beta5
2U	-11.8140	0.4828	1.0308	-0.2403	-1.0218	0.0125	-	-
	(1.2722)	(0.2885)	(0.1330)	(0.2129)	(0.1557)	(0.0043)		
3T	-9.9762	-0.5783	0.9931	-1.1242	0.0000	-	-	-
	(3.1817)	(0.2896)	(0.3402)	(0.7883)	(n/a)			
4U	-12.9084	-1.1735	1.3778	0.4001	-0.5018	-	-	-
	(2.5712)	(0.3325)	(0.2820)	(0.2544)	(0.1620)			
4D	-9.7538	-0.0008	0.8329	-0.7641	-0.4188	0.0228	-0.0156	-
	(1.8069)	(0.2730)	(0.1708)	(0.3445)	(0.2943)	(0.0059)	(0.0055)	
5T	-10.7916	0.3563	0.9049	-0.6876	-1.0932	0.0351	-	-
	(2.6197)	(0.8276)	(0.2556)	(0.3087)	(0.2338)	(0.0121)		

Table 5-31: MVN OTHER for Base Conditions Combined Data (Urban/Suburban Arterial Segments)

Crashes per year = (length)exp^(Alpha1+Ohio)AADT^(Beta1) exp^(Beta3*dwydens++Beta4*fodensity+Beta5*medwid)

The dispersion parameter is modeled as: Dispersion parameter = exp^(Alpha2)(length)^(Beta2)

For SV crashes, a base condition model was not successfully calibrated for 2U sites, nor was an SV model calibrated for average condition sites. For 2U, we recommend applying the total crash model, with the proportion of SV crashes applied as a multiplier.

Site Type	Alpha1	Ohio	Beta1	Alpha2	Beta2	Beta3	Beta4	Beta5			
2U		Use Total model with proportion of SV crashes applied									
3T	-5.8853	0.5923	0.4605	-0.1893	-0.2883	-	-	-			
	(3.1236)	(0.4389)	(0.3329)	(0.4213)	(0.3431)						
4U	-8.0865	-0.3745	0.7804	-0.1446	-0.2903	-	-	-			
	(2.0681)	(0.2859)	(0.2230)	(0.3820)	(0.2575)						
4D	-6.4017	0.0008	0.6158	-0.7961	-0.4715	-	-	-			
	(1.1787)	(0.1957)	(0.1174)	(0.2256)	(0.2323)						
5T	-2.5500	1.0495	0.1118	-0.2065	-0.5637	-	-	-			
	(2.5756)	(0.8577)	(0.2599)	(0.2853)	(0.2571)						

Table 5-32: SV for Base Conditions Combined Data (Urban/Suburban Arterial Segments)

Crashes per year = (length)exp^(Alpha1+Ohio)AADT^(Beta1) exp^(Beta3*dwydens++Beta4*fodensity+Beta5*medwid)

Site Type	Alpha1	Ohio	Beta1	Alpha2	Beta2	Beta3	Beta4	Beta5
2U	-3.5624	-0.4718	0.3012	-0.2936	-0.5305	-	-	-
	(0.8332)	(0.1697)	(0.0913)	(0.1619)	(0.1519)			
3T	-11.6068	-0.8093	1.1744	-0.0771	-0.1357	-	-	-
	(3.6625)	(0.3293)	(0.3908)	(0.5609)	(0.3601)			
4U	-15.2872	-1.0078	1.5836	0.0294	-0.3047	-	-	-
	(2.4074)	(0.2853)	(0.2584)	(0.3401)	(0.2428)			
4D	-9.3164	-0.5921	0.9517	-0.6972	-0.3866	-0.0154	-	-
	(1.5701)	(0.2011)	(0.1531)	(0.2836)	(0.2297)	(0.0047)		
5T	-12.0075	0.2310	1.1560	-0.8875	-0.7748	-	-	-
	(2.2805)	(0.7202)	(0.2267)	(0.3773)	(0.2775)			

Table 5-33: Nighttime for Base Conditions Combined Data (Urban/Suburban Arterial Segments)

Crashes per year = (length)exp^(Alpha1+Ohio)AADT^(Beta1) exp^(Beta3*dwydens++Beta4*fodensity+Beta5*medwid)

The dispersion parameter is modeled as: Dispersion parameter = $exp^{(Alpha2)}(length)^{(Beta2)}$

Site Type	Alpha1	Ohio	Beta1	Alpha2	Beta2	Beta3	Beta4	Beta5
2U	-13.6423	0.5823	1.2126	0.1486	-0.7353	0.0177	-	-
	(1.4577)	(0.2970)	(0.1530)	(0.1816)	(0.1621)	(0.0038)		
3T	-12.6716	1.2663	1.1270	0.5494	-0.1044	-	-	-
	(4.2048)	(0.5717)	(0.4444)	(0.3448)	(0.3036)			
4U	-18.7490	0.0410	1.7873	0.3580	-0.5745	0.0183	-	-
	(2.9281)	(0.4100)	(0.3133)	(0.2914)	(0.2016)	(0.0049)		
4D	-11.5730	0.3881	0.9784	0.3945	-0.7538	0.0562	-0.0472	-
	(3.3464)	(0.6447)	(0.3263)	(0.3450)	(0.2827)	(0.0112)	(0.0130)	
5T	-12.4484	1.4306	1.0472	-0.4074	-1.0384	0.0186	-	-
	(2.7823)	(1.0530)	(0.2702)	(0.2826)	(0.2437)	(0.0063)		

Crashes per year = (length)exp^(Alpha1+Ohio)AADT^(Beta1) exp^(Beta3*dwydens++Beta4*fodensity+Beta5*medwid) The dispersion parameter is modeled as: Dispersion parameter = exp^(Alpha2)(length)^(Beta2)

5.2 Intersections

5.2.1 Estimation Data

Models have been estimated for four-leg signal-controlled (4SG) intersections, three-leg signal-controlled (3SG) intersections, four-leg stop-controlled (4ST) intersections, and three-leg stop-controlled (3ST) intersections on urban and suburban arterials, based on Ohio data for 2009–11. We estimated three sets of models:

- Average condition models use data from all the sites but use only AADT as the independent variable.
- **Base condition models** use data only from base conditions and use only AADT as the independent variable.
- **Fully specified models** use AADT and other intersection characteristics as independent variables.

Only the base condition models are reported here; for the average condition models, see Appendix A.

Ohio DOT provided the traffic volume, crash data, and other site characteristics they had compiled to calibrate the prediction models from the HSM. While the major roads leading to the intersections were predominantly state maintained, the minor roads often were not. For the quality of minor-road AADT, Ohio DOT provided two confidence levels. If the minor-road AADT was based on actual counts, the confidence level was considered high. If it was based on the functional class, then the confidence level was considered medium. To have a sufficient sample of sites for estimating the prediction models, we included intersections with both high and medium confidence levels for the minor-road AADT.

We estimated models for the following crash types:

- Total (TOT)
- Same direction (SD)
- Opposite direction (OD)
- Intersecting direction (ID)
- Single vehicle (SV)

For these individual crash types, we estimated models for KABCO, KABC, KAB, and KA severity levels. Models for pedestrian and bicycle crashes were not estimated because pedestrian and bicycle volumes were lacking at most of the intersections.

Table 5-35 shows the distribution of categorical variables (for example, number of turn lanes) for the four intersection types. Table 5-36 to Table 5-39 show the summary statistics for the data used for estimating the prediction models, which are based on all three years of data for each site.

In setting base conditions, we sought to use the same conditions as in the current HSM chapter for urban and suburban arterial road intersections.

For signal-controlled intersections, we defined the base conditions as follows:

- No left-turn lanes
- No right-turn lanes

- No right-turn-on-red prohibition (that is, right-turn-on-red is allowed on all legs)
- No red light cameras
- Lighting is present. (Note: This is different from what is currently in the HSM. As shown in Table 5-35, most of the signal-controlled intersections had lighting, which left us with an insufficient sample of intersections without lighting.)

For stop-controlled intersections, we defined the base conditions as follows:

- No left-turn lanes
- No right-turn lanes
- No lighting
- No schools within 1,000 feet
- No bus stops within 1,000 feet
- No alcohol sales establishments within 1,000 feet

Variable		3SG	3ST	4SG	4ST
	0	485	7214	803	2342
	1	301	315	210	74
Number of legs with left-turn lanes	2	189	48	692	106
	3	0	0	323	11
	4	0	0	734	2
	0	721	7470	1985	2466
	1	204	101	430	59
Number of legs with right-turn lanes	2	50	6	243	8
	3	0	0	68	2
	4	0	0	36	0
	0	619	7282	998	2374
Number of legs with left-turn lanes on major road	1	323	282	331	69
	2	33	13	1433	92
	0	865	7523	2286	2496
Number of legs with right-turn lanes on major road	1	105	54	359	38
	2	5	0	117	1
	0	703	7481	1396	2474
Number of legs with left-turn lanes on minor road	1	254	89	430	48
	2	18	7	936	13
	0	792	7518	2221	2498
Number of legs with right-turn lanes on minor road	1	177	59	411	33
	2	6	0	130	4
Lighting	Not Present	91	2407	278	680
	Present	884	5170	2484	1855
	0	852	7574	2454	2532
Number of enpression prohibiting right turn on	1	84	0	98	0
Number of approaches prohibiting right-turn-on-	2	39	0	79	0
	3	0	0	35	0
	4	0	0	96	0
Ded light comerce	Not Present	963	7576	2708	2535
	Present	12	0	54	0
Schools within 1000 foot	Not Present	849	6961	2420	2289
	Present	126	616	342	246
Number of liquor stores within 1000 feet	0	937	7341	2559	2437
	1 to 8	38	236	203	98
	0	707	6615	2322	2318
Number of bus stops within 1000 feet	1 or 2	32	179	101	50
	3 or more	236	783	339	167

Table 5-35: Distribution of categorical variables by intersection type (urban/suburban arterials)

Variable	Number of crashes	Mean	Std. Dev	Minimum	Maximum
Major road AADT		12,363	4949	3050	32,109
Minor road AADT		4077	3026	110	18,415
Total Intersection AADT		16,440	5989	4440	44,345
Ratio of Minor to Total		0.25	0 1 2	0.02	0.5
Intersection AADT		0.25	0.13	0.02	0.5
КА	62	0.18	0.42	0	2
КАВ	375	1.09	1.37	0	9
КАВС	854	2.48	2.47	0	13
КАВСО	4026	11.67	9.14	0	52
SV_KA	13	0.04	0.19	0	1
SV_KAB	47	0.14	0.38	0	3
SV_KABC	67	0.19	0.47	0	4
SV_KABCO	253	0.73	1.21	0	15
SD_KA	22	0.06	0.24	0	1
SD_KAB	158	0.46	0.75	0	4
SD_KABC	424	1.23	1.38	0	6
SD_KABCO	2302	6.67	5.8	0	39
OD_KA	10	0.03	0.17	0	1
OD_KAB	60	0.17	0.53	0	6
OD_KABC	99	0.29	0.68	0	7
OD_KABCO	369	1.07	1.47	0	11
ID_KA	17	0.05	0.24	0	2
ID_KAB	108	0.31	0.73	0	6
ID_KABC	253	0.73	1.36	0	10
ID_KABCO	974	2.82	3.52	0	24

Table 5-36: Descriptive statistics for base condition SPFs (3SG: 345 intersections)

Variable	Number of crashes	Mean	Std Dev	Minimum	Maximum
Major road AADT		8187	5221	270	38,460
Minor road AADT		2137	1400	33	18,460
Total Intersection AADT		10,324	5810	540	56,920
Ratio of Minor to Total		0.23	0 1 2	0	0.5
Intersection AADT		0.25	0.12	0	0.5
КА	198	0.1	0.32	0	3
КАВ	840	0.4	0.78	0	7
КАВС	1422	0.68	1.15	0	11
КАВСО	4756	2.28	3.47	0	49
SV_KA	59	0.03	0.18	0	2
SV_KAB	222	0.11	0.36	0	5
SV_KABC	297	0.14	0.43	0	6
SV_KABCO	952	0.46	0.87	0	13
SD_KA	52	0.02	0.16	0	2
SD_KAB	323	0.16	0.48	0	6
SD_KABC	661	0.32	0.75	0	9
SD_KABCO	2390	1.15	2.37	0	31
OD_KA	43	0.02	0.14	0	1
OD_KAB	128	0.06	0.25	0	2
OD_KABC	184	0.09	0.3	0	3
OD_KABCO	453	0.22	0.54	0	4
ID_KA	43	0.02	0.16	0	3
ID_KAB	163	0.08	0.33	0	4
ID_KABC	272	0.13	0.49	0	9
ID_KABCO	885	0.43	1.08	0	14

Table 5-37: Descriptive statistics for base condition SPFs (3ST: 2082 intersections)

Variable	Number of crashes	Mean	Std. Dev	Minimum	Maximum
Major road AADT		11,067	5650	1810	34,960
Minor road AADT		3803	3167	72	27,228
Total Intersection AADT		14,870	7344	2061	56,488
Ratio of Minor to Total		0.25	0 13	0.01	0.5
Intersection AADT		0.25	0.15	0.01	0.5
КА	148	0.25	0.56	0	4
КАВ	767	1.3	1.79	0	14
КАВС	1798	3.05	3.67	0	35
КАВСО	7253	12.31	12.7	0	109
SV_KA	16	0.03	0.16	0	1
SV_KAB	73	0.12	0.37	0	3
SV_KABC	112	0.19	0.48	0	3
SV_KABCO	409	0.69	1.05	0	9
SD_KA	53	0.09	0.33	0	3
SD_KAB	283	0.48	0.92	0	8
SD_KABC	868	1.47	2.15	0	18
SD_KABCO	3964	6.73	8.32	0	76
OD_KA	27	0.05	0.23	0	2
OD_KAB	167	0.28	0.74	0	6
OD_KABC	309	0.52	1.14	0	10
OD_KABCO	1021	1.73	2.81	0	25
ID_KA	51	0.09	0.29	0	2
ID_KAB	239	0.41	0.83	0	8
ID_KABC	483	0.82	1.34	0	8
ID_KABCO	1671	2.84	3.36	0	26

Table 5-38: Descriptive statistics for base condition SPFs (4SG: 589 intersections)

Variable	Number of crashes	Mean	Std Dev	Minimum	Maximum
Major road AADT		8251	6179	450	37,301
Minor road AADT		2088	1459	50	13,773
Total Intersection AADT		10,339	6658	810	40,111
Ratio of Minor to Total		0.23	0 13	0	05
Intersection AADT		0.25	0.15	0	0.5
КА	120	0.22	0.56	0	4
КАВ	432	0.78	1.39	0	9
КАВС	706	1.28	1.99	0	16
КАВСО	1931	3.5	4.58	0	51
SV_KA	20	0.04	0.2	0	2
SV_KAB	61	0.11	0.37	0	2
SV_KABC	72	0.13	0.39	0	2
SV_KABCO	265	0.48	0.81	0	5
SD_KA	15	0.03	0.18	0	2
SD_KAB	84	0.15	0.46	0	4
SD_KABC	219	0.4	1.05	0	14
SD_KABCO	720	1.31	2.91	0	46
OD_KA	21	0.04	0.2	0	2
OD_KAB	60	0.11	0.38	0	3
OD_KABC	83	0.15	0.44	0	3
OD_KABCO	214	0.39	0.82	0	6
ID_KA	64	0.12	0.41	0	4
ID_KAB	225	0.41	0.99	0	7
ID_KABC	328	0.6	1.31	0	9
ID_KABCO	705	1.28	2.24	0	15

Table 5-39: Descriptive statistics for base condition SPFs (4ST: 551 intersections)

5.2.2 Estimated Models

We estimated all the models using negative binomial regression with a constant overdispersion parameter and the traditional log-linear framework. Most previous studies on this topic have used a *power* function, which provides limited flexibility in the functional form. In this section, we used the *Hoerl* function to provide more flexibility in the functional form (Hauer, 2015). The Hoerl function allows the relationship to have a convex/concave shape with inflection points. With it, the dependent variable (Y) is related to the independent variable (X) in the following way:

$$Y = \exp[a_1 + a_2 X + a_3 \ln(X)] \text{ or } Y = e^{a_1} e^{a_2 X} X^{a_3},$$
(5-1)

where a_1 , a_2 , and a_3 are parameters to be estimated. We examined two functional forms, Model A and Model B.

Model A included as the starting point the following independent variables in the following form:

$$Y = e^{a} \times e^{b \times \left(\frac{AADT_{maj}}{10000}\right)} \times (AADT_{maj})^{c} \times e^{d \times \left(\frac{AADT_{min}}{10000}\right)} \times (AADT_{min})^{e}$$
(5-2)

Model B included as the starting point the following independent variables in the following form:

$$Y = e^{a} \times e^{b \times \left(\frac{AADT_{tot}}{10000}\right)} \times (AADT_{tot})^{c} \times e^{d \times \left(\frac{AADT_{min}}{AADT_{tot}}\right)} \times \left(\frac{AADT_{min}}{AADT_{tot}}\right)^{e}$$
(5-3)

where Y is the predicted number of crashes in one year, and a, b, c, d, and e are parameters to be estimated.

For both model forms A and B, the estimation started with all the variables presented above, and, through backward elimination, variables that were not statistically significant were removed. The final models from both forms (that is, forms A and B) are presented below.

Table 5-40 to Table 5-43 provide the model results, including parameter estimates (that is, coefficients a, b, c, d, and e), standard errors (in parentheses), and the overdispersion parameter (k). For some crash types, models could not be estimated, or they did not converge. In some cases, the overdispersion parameter was quite high (exceeding 2). These models should be used with caution. For the crash types for which models could not be estimated, we recommend using the prediction for the next closest model and multiplying the prediction by the proportion of that crash type. For example, if a prediction model for KA crashes is not available, but one for KAB crashes is, the prediction for KA crashes can be obtained by the following equation:

$$Predicted KA crashes = Predicted KAB crashes \times \left(\frac{Number of KA crashes in the data set}{Number of KAB crashes in the data set}\right)$$
(5-4)

Crash Type	Severity	Model Form	a (S.E.)	b (S.E.)	c (S.E.)	d (S.E.)	e (S.E.)	k (S.E.)
A II	KARCO	P	-4.5704		.6366		.1519	.4669
All	KABCU	D	(1.0173)		(.1051)		(.0618)	(.0432)
A 11	KARC	۸	-6.7956		.4799		.2585	.5344
All	KADC	A	(1.3109)		(.1274)		(.0725)	(.0805)
A II	KVD	۸	-8.0554		.5062		.2814	.5745
All	KAD	A	(1.6897)		(.1660)		(.0916)	(.1336)
All	KA	А			Model did r	not conver	ge	
S\/	KARCO	۸	-2.3447	.3894		.9168		.4113
30	KABCO	A	(.2106)	(.1448)		(.1964)		(.1444)
SV	KABC				Model did r	not conver	ge	
SV	КАВ				Model did r	not conver	ge	
SV	KA				Model did r	not conver	ge	
SD	KARCO	۸	-6.2255		.5414		.2390	.4615
30	KABCU	A	(1.0384)		(.1034)		(.0575)	(.0486)
50	KARC	^	-9.1985		0.6682		0.2495	0.3761
SD KABC	KADU	A	(1.5615)		(0.1517)		(0.0828)	(0.1029)
50	KAD		-9.3282		.5844		.2413	.4521
30	NAD	А	(2.2931)		(.2243)		(.1223)	(.2344)
SD	KA				Model did r	not conver	ge	
00	KARCO	D	-10.0017		0.9248			0.7486
00	KABCU	D	(1.9351)		(0.1991)			(0.1512)
00	KARC	^	-17.9744		1.3504		0.3523	1.1826
UD	KADU	А	(3.5381)		(0.3371)		(0.1741)	(0.4533)
00	KVD	۸	-21.2395		1.4846		.5304	1.4144
00	KAD	A	(4.5175)		(.4257)		(.2182)	(.6955)
OD	KA		Model did not converge					
	KARCO	р	-2.3636		0.2385			1.0859
U	KABCU	В	(1.6005)		(0.1658)			(0.1221)
	KARC	D	-2.9487		0.1596			1.7788
	D	(2.3752)		(0.2460)			(0.3222)	
	KAD		-4.1873		0.1997			2.2076
טו	NAB	Ď	(3.2704)		(0.3385)			(0.6438)
ID K	K A	Р	-8.9578		0.5014			4.3772
	NA	D	(7.2945)		(0.7521)			(4.1273)

 Table 5-40: Prediction Models for 3SG Intersections
Crash Type	Severity	Model Form	a (S.E.)	b (S.E.)	c (S.E.)	d (S.E.)	e (S.E.)	k (S.E.)
All	КАВСО	А	-3.1275 (0.8631)	0.6210	0.2319	0.7280		0.8087
			-2 3919	7690	(0.1005)	(0.1754)		7615
All	КАВС	В	(.0706)	(.0514)				(.0838)
		_	-2.7900	.6705				.8031
All	КАВ	В	(.0829)	(.0593)				(.1266)
		_	-4.0506	.5272				.8594
All	KA	В	(.1482)	(.1044)				(.4459)
<u> </u>	KADCO		1.0576	0.3861	-0.3676			1.0986
50	КАВСО	В	(1.3977)	(0.1658)	(0.1711)			(0.1316)
SV/	KADC	Р	-0.0628	0.2730	-0.3596			1.4458
50	KABC	В	(2.1687)	(0.2626)	(0.2659)			(0.3783)
SV/	KAD	D	-1.8441		-0.1647			1.6069
30	NAD	D	(1.1345)		(0.1252)			(0.5129)
SV/	KA	D	-2.0986		-0.2835			4.0221
30	KA .	Б	(2.1063)		(0.2334)			(2.6334)
SD	KABCO	B	-14.8383		1.4636		1385	1.1428
50	KABCO	D	(.6258)		(.0689)		(.0539)	(.0803)
SD	KABC	B	-14.2585		1.3176	-1.1784		.9478
50	KADC		(.9668)		(.0989)	(.4720)		(.1552)
SD	ΚΔB	B	-14.1222		1.2298	-1.2920		1.3071
50	INAD		(1.3007)		(.1327)	(.6521)		(.3124)
SD	κΔ	в	-11.5340		.7330			1.7962
50			(2.5011)		(.2685)			(2.0336)
OD	КАВСО	в	-3.3353	0.6177				1.1523
00	10.000	5	(.1100)	(.0794)				(.2364)
OD	КАВС	В	-4.1549	.5514				.2950
	10.00		(.1470)	(.1003)				(.3737)
OD	КАВ	В	-4.4870	.5270				.6168
			(.1778)	(.1231)				(.6314)
OD	KA	В			Model did n	ot converge		
סו	КАВСО	Δ	-11.1651		0.8094		0.2535	2.2740
	10.000	~	(0.8035)		(0.0849)		(0.0719)	(0.2200)
ID	КАВС	Α	-12.7177		0.8967		0.1974	3.3635
	10.00		(1.2614)		(0.1316)		(0.1118)	(0.6204)
ID	КАВ	А	-14.4692		0.9112		0.3412	3.0787
			(1.5707)		(0.1608)		(0.1432)	(0.8626)
ID	КА	А	-17.4865		1.0812		0.3558	7.9899
			(3.1341)		(0.3051)		(0.3044)	(4.2722)

Table 5-41: Prediction models for 3ST intersections

Copyright National Academy of Sciences. All rights reserved.

Crash Type	Severity	Model Form	a (S.E.)	b (S.E.)	c (S.E.)	d (S.E.)	e (S.E.)	k (S.E.)
۵۱	КАВСО	В	-7.4359		.9218			.5514
/ \	10,0000		(.6531)		(.0685)			(.0381)
All	КАВС	в	-10.5443		1.0989			.6386
,	10100		(.8782)		(.0915)			(.0628)
All	КАВ	в	-9.9857		.9535			.7440
	10.0		(1.0898)		(.1134)			(.1031)
All	КА	В	-9.6739		.7511			.6997
		_	(1.8404)		(.1907)			(.3296)
SV	КАВСО	В	-4.3216		.3000			.7818
		_	(1.2070)		(.1264)			(.1586)
SV	КАВС	В	-7.7339		0.5209			0.9105
		_	(2.0833)		(0.2169)			(0.4749)
SV	КАВ	В	-8.9332		0.6011			0.8532
			(2.5001)		(0.2597)			(0.6746)
SV	КА			[Model did	not converge	2	
SD	КАВСО	А	-8.2447		0.9424	0.6264		0.5800
			(0.6774)		(0.0744)	(0.1243)		(0.0448)
SD	КАВС	А	-14.2230		1.2127		0.2693	0.6257
			(1.0584)		(0.1114)		(0.0657)	(0.0848)
SD	КАВ	А	-15.2404		1.2210		0.2476	0.8485
			(1.6168)		(0.1695)		(0.1001)	(0.2019)
SD	КА	А	-14.3865		.7926		.4313	1.7976
			(3.1409)		(.3312)		(.2196)	(1.1221)
OD	КАВСО	А	-9.7053		.7364		.2867	1.1587
			(1.0998)		(.11/3)		(.0767)	(.1190)
OD	КАВС	В	-13.5030		1.2228			1.8372
			(1.8439)		(0.1914)			(0.3049)
OD	КАВ	В	-12.7760		1.0838			2.2166
			(2.1//2)		(.2256)			(.5129)
OD	КА	В	-12.8419		.9029			3.8585
			(4.4636)		(.4616)		1010	(3.0410)
ID	КАВСО	А	-1.5214	.3492			.1316	.8944
			(.4578)	(.0863)	2077		(.0594)	(.00180.)
ID	KABC	А	-5.6212		.2977		.1958	1.2440
			(1.1967)		(.1319)		(.0860)	(.1843)
ID	КАВ	А	-6.1898		.4390			1.4297
			(1.6067)		(.16/9)			(.3125)
ID	КА	A			wodel did	not converge	2	

Table 5-42: Prediction models for 4SG intersections

Crash Type	Severity	Model Form	a (S.E.)	b (S.E.)	c (S.E.)	d (S.E.)	e (S.E.)	k (S.E.)
All	KABCO	۸	-3.6743		.4071	.9208		1.0155
All	KABCO	A	(.6256)		(.0726)	(.3490)		(.0867)
All	КАВС	B	-3.9675		.3417			1.6020
	KADC	D	(.9735)		(.1067)			(.1834)
All	КАВ			Coι	ıld not obtain	useful mo	del	
All	KA			Coι	ıld not obtain	useful mo	del	
SV/	KARCO	D	-2.2170	.3435				.5835
50	KABCU	D	(.1253)	(.0889)				(.1913)
sv	КАВС	в	-13.8618	-1.0741	1.3021			1.5358
50	NADC		(5.6055)	(0.6352)	(0.6814)			(0.8553)
sv	κΔΒ	в	-12.0750	-0.9275	1.0714			2.8132
51	1010		(5.9194)	(0.6816)	(0.7211)			(1.3122)
SV	КА	В	-8.3241		0.4279			1.7361
		_	(3.5390)		(0.3835)			(2.8313)
SD	КАВСО	Α	-12.4690		1.0633		.2661	1.1504
			(1.0120)		(.1013)		(.0875)	(.1471)
SD	КАВС	Α	-5.9134	.8168			.4033	1.8464
	10100		(.9920)	(.1394)			(.1322)	(.3910)
SD	КАВ	Α	-5.8261	.3579			.3360	1.8506
	10.0		(1.3016)	(.1865)			(.1742)	(.7743)
SD	KA				Model did no	t converge	1	
OD	КАВСО	В	-6.0829		0.4417			1.4996
	10.000		(1.2859)		(0.1399)			(0.3422)
OD	КАВС	в	-5.5548		0.2814			2.3460
	IN DC		(1.9029)		(0.2078)			(0.9251)
ОП	κΔΒ	R	-5.5578		0.2462			3.0857
00	INAU		(2.1901)		(0.2393)			(1.3915)
OD	KA				Model did no	t converge		
ID	КАВСО			Οοι	ıld not obtain	useful moo	del	
ID	КАВС			Cou	ıld not obtain	useful moo	del	
ID	КАВ			Οοι	ıld not obtain	useful moo	del	
ID	KA			Cou	ıld not obtain	useful mo	del	

Table 5-43: Prediction models for 4ST crashes

5.2.3 Validation of Models

To calibrate and validate the models estimated using the data from Ohio, we used six years of data (2010– 15) from North Carolina. Some of the data for calibration were compiled as part of project funded by the North Carolina Department of Transportation (Smith et al. 2016). It was extremely difficult to find intersections that matched the base conditions. Among the 102 four-leg signal-controlled intersections that were identified, for example, only three matched the base conditions used to estimate the original SPFs. Similarly, among the 33 three-leg signal-controlled intersections identified, none matched the base conditions. Since the number of intersections with the "base conditions" were very small, the calibration/validation sample included all intersections (including both intersections whose characteristics matched the base conditions, and intersections whose characteristics did not match the base conditions). For those intersections whose characteristics did not match the base conditions. For those intersections whose characteristics from the base models. As mentioned earlier, for the base models that were estimated using the Ohio data for signalized intersections, the base condition was "lighting present". However, the base condition in the 1st edition of the HSM was "lighting not present". Hence, for signalized intersections, the inverse of the CMF from the HSM was used.

We conducted calibration and validation for the following crash types:

- All crashes (KABCO)
- SV_KABCO
- SD_KABCO
- OD KABCO
- ID_KABCO

The sample of crashes was limited for the other crash types, especially in the case of the stop-controlled intersections. Table 5-44 to Table 5-47 provide the summary of the data used in the calibration and validation.

Variable	Sum	Mean	Standard deviation	Minimum	Maximum
КАВСО	839	25.42	29.40	0	171
SV_KABCO	83	2.52	2.27	0	7
SD_KABCO	466	14.12	19.98	0	116
OD_KABCO	119	3.61	5.67	0	31
ID_KABCO	179	5.42	5.24	0	18
Major AADT		14,935	7,801	3,198	32,208
Minor AADT		7,124	4,245	267	16,683
Total AADT		22,059	10,519	6,935	48,542

Table 5-44: Summary of Calibration/Validation data set from North Carolina for 3SG	ì
intersections (33 intersections; 2010 to 2015)	

Variable	Sum	Mean	Standard deviation	Minimum	Maximum
КАВСО	304	5.85	8.10	0	36
SV_KABCO	55	1.06	1.55	0	7
SD_KABCO	124	2.38	4.43	0	19
OD_KABCO	48	0.92	1.59	0	8
ID_KABCO	87	1.67	2.38	0	10
Major AADT		7,682	7,232	67	45,733
Minor AADT		1,764	2,227	18	9,500
Total AADT		9,446	7,832	117	45,803

Table 5-45: Summary of Calibration/Validation data from North Carolina for 3ST intersections(52 intersections: 2010 to 2015 data)

Table 5-46: Summary of Calibrat	ion/Validation data from Nortl	າ Carolina for 4SG intersections
(102 intersections: 2010 to 2015)	

Variable	Sum	Mean	Standard deviation	Minimum	Maximum
КАВСО	6049	59.3	51.4	0	275
SV_KABCO	285	2.8	2.6	0	13
SD_KABCO	3605	35.3	39.4	0	229
OD_KABCO	752	7.4	6.4	0	35
ID_KABCO	1436	14.1	10.3	0	50
Major AADT		19,574	10,047	3,500	47,063
Minor AADT		10,053	6,492	15	33,625
Total AADT		29,627	14,308	6,200	69,433

Table 5-47: Summary of the Calibration/Validation data from North Carolina for 4ST
intersections (55 intersections: 2010 to 2015 data)

Variable	Sum	Mean	Standard deviation	Minimum	Maximum
КАВСО	464	8.92	7.48	0	35
SV_KABCO	48	0.92	1.12	0	4
SD_KABCO	156	3.00	2.69	0	15
OD_KABCO	51	0.98	1.30	0	6
ID_KABCO	210	4.04	5.24	0	29
Major AADT		7101	5339	335	29,375
Minor AADT		1122	1214	5	8,625
Total AADT		8223	5372	363	38,000

We considered two basic options for calibration and validation. The first was to estimate a calibration factor following the approach outline in the HSM. The second was to estimate a calibration function (Srinivasan et al. 2016). As discussed in Srinivasan et al. (2016), calibration functions can take many forms. For this effort, we used the following form:

$$Y = a \times \prod_{i=1}^{n} CMF_i \times (Base \ Pred)^b \tag{5-5}$$

where Y is the expected number of crashes, *Base Pred* is the prediction from the base model, and $\prod_{i=1}^{n} CMF_i$ represents the product of the CMFs from the HSM. This equation can also written as follows:

$$Y = \prod_{i=1}^{n} CMF_i \times \exp[\ln(a) + b \times \ln(Base \ Pred)]$$
(5-6)

If b is close to 1, the calibration function will not provide any advantages over a simple calibration factor (if b = 1, the calibration factor is "a").

To estimate In(a) and b, we used a negative binomial regression model. The dependent variable was the number of observed crashes at each site, and the independent variables included Base Pred. The product of the CMFs was included as an offset. For some of the intersection types, data were available on the North Carolina region (Coastal, Piedmont, or Mountain), and we included them in the negative binomial model in addition to Base Pred.

There are at least two ways of estimating a calibration function. One is to use the approach followed in Srinivasan et al. (2016), in which the solver tool in Excel is used to estimate the negative binomial regression using maximum likelihood estimation, with a constraint to ensure the total fitted values are equal to the total observed crash counts. The second is to use traditional tools, such as SAS PROC GENMOD, which also use maximum likelihood estimation, but without any constraints regarding the fitted and observed values. The second approach was used here, but before the calibration functions were evaluated using goodness-of-fit measures, they were calibrated in order to ensure that the total fitted values and the total observed crash counts are the same.

Table 5-48 to Table 5-51 provide information on the calibration factors and calibration functions estimated for 3SG, 3ST, 4SG, and 4ST intersections, respectively. After estimating both, we used "The Calibrator," a tool (already mentioned) developed by FHWA for calibrating and assessing SPFs, to obtain the following goodness-of-fit (GOF) measures:

- Modified R²—higher values indicate better-fitting SPFs.
- MAD (mean absolute deviation)—lower values indicate better-fitting SPFs.
- Maximum absolute CURE deviation (MACD)—lower values indicate better-fitting SPFs.
- Percentage CURE deviation—lower values indicate better-fitting SPFs. The Calibrator recommends this be 5 percent or lower.

The Calibrator tool automatically calibrates a model before producing the GOF measures. For example, if a calibration function predicts a total of 845.5 crashes and the total observed crashes were 839, then a calibration factor of 839/845.5 (=0.992) is applied before the GOF measures are produced. In most cases, the calibration functions provided better GOF measures. This indicates agencies should consider using calibration functions if the calibration factors alone do not provide a reasonable fit for their sample data.

Crash Type	Option	Total Observed Crashes	Total Predicted Crashes	ln(a) (S.E.)	b (S.E.)	Calibration Factor	Modified R ²	MAD	MACD	% Cure Deviation
A 11	HSM calibration	839	765.1			1.097	0.20	13.42	135.8	33%
All	Calibration function	839	845.5	-3.761 (1.430)	2.115 (0.426)	0.992	0.28	13.67	81.6	0%
SV/	HSM calibration	83	62.1			1.337	0.00	1.98	18.1	18%
5V	Calibration function	83	82.8	0.984 (0.258)	0.226 (0.287)	1.002	0.05	1.78	6.7	3%
	HSM calibration	466	443.8			1.050	0.21	8.60	82.9	52%
20	Calibration function	466	471.4	-3.242 (1.148)	2.113 (0.406)	0.989	0.27	8.78	52.2	3%
	HSM calibration	119	72.9			1.633	0.18	2.87	25.3	15%
UD	Calibration function	119	119.2	-0.247 (0.495)	1.636 (0.447)	0.999	0.22	2.99	13.6	3%
ID	HSM calibration	179	158.3			1.131	0.09	3.99	25.0	9%
	Calibration function	179	182.7	-9.498 (2.399)	6.276 (1.321)	0.979	0.45	3.25	10.5	3%

Table 5-48: Calibration/Validation Results for 3SG intersections

Crash Type	Option	Total Observed Crashes	Total Predicted Crashes	ln(a) (S.E.)	b (S.E.)	Calibration Factor	Modified R ²	MAD	MACD	% Cure Deviation
A 11	HSM calibration	304	207.0			1.469	0.00	5.35	49.4	2%
All	Calibration function	304	412.4	0.04512 (0.6234)	1.1633 (0.3058)	0.737	0.00	5.77	96.9	13%
SV/	HSM calibration	55	48.8			1.126	0.00	1.23	20.9	83%
SV	Calibration function	55	60.0	0.5732 (0.4092)	-1.6434 (1.1889)	0.917	0.00	1.08	11.5	8%
CD.	HSM calibration	124	70.4			1.761	0.04	2.45	16.6	0%
50	Calibration function	124	124.3	0.7871 (0.5059)	0.5261 (0.2174)	0.997	0.18	2.51	17.6	0%
	HSM calibration	48	20.0			2.406	0.00	1.03	6.2	21%
OD	Calibration function	48	97.3	1.5399 (0.6837)	1.9334 (0.7517)	0.493	0.00	1.32	25.4	21%
	HSM calibration	87	28.0			3.110	0.13	1.64	12.5	2%
טו	Calibration function	87	92.2	0.3237 (0.4322)	0.7153 (0.2365)	0.943	0.20	1.47	13.6	6%

Table 5-49: Calibration/Validation results for 3ST intersections

Crash type	Option	Total Observed Crashes	Total Predicted Crashes	ln(a) (S.E.)	b (S.E.)	Calibration Factor	Modified R ²	MAD	MACD	% Cure Deviation
A 11	HSM calibration	6260	2753.1			2.270	0.23	32.91	447.2	25%
All	Calibration function	6260	6507.2	-0.6905 (0.5942)	1.4591 (0.1528)	0.960	0.36	30.19	408.8	1%
SV/	HSM calibration	285	105.2			2.708	0.00	2.08	38.3	17%
SV	Calibration function	285	286.8	0.0150 (0.3689)	2.8972 (0.5726)	0.994	0.24	1.85	17.4	1%
SD.	HSM calibration	3605	2245.1			1.606	0.44	20.52	204.8	1%
30	Calibration function	3605	3891.9	0.4928 (0.4031)	1.0693 (0.1069)	0.926	0.43	19.20	290.2	1%
00	HSM calibration	752	413.5			1.819	0.02	4.72	78.2	20%
OD	Calibration function	752	768.0	1.9957 (0.2708)	0.4826 (0.1249)	0.979	0.15	4.54	36.8	1%
ID -	HSM calibration	1436	542.3			2.648	0.03	7.54	99.8	12%
	Calibration function	1436	1488.1	1.5775 (0.4119)	0.8396 (0.1790)	0.965	0.11	7.26	85.4	4%

Table 5-50: Calibration/Validation results for 4SG intersections

Crash Type	Option	Total Observed Crashes	Total Predicted Crashes	ln(a) (S.E.)	b (S.E.)	Calibration Factor	Modified R ²	MAD	MACD	% Cure Deviation
A11	HSM calibration	464	266.6			1.741	0.00	5.88	76.9	10%
	Calibration function	464	551.4	0.01803 (0.5403)	1.3714 (0.3097)	0.842	0.00	5.96	72.9	0%
SV	HSM calibration	48	41.3			1.163	0.00	0.81	4.8	2%
	Calibration function	48	48.6	0.1673 (0.1791)	1.0300 (0.6541)	0.987	0.00	0.81	5.0	2%
SD.	HSM calibration	157	68.2			2.300	0.00	2.28	31.3	2%
30	Calibration function	157	181.5	1.1655 (0.1535)	0.7739 (0.1651)	0.865	0.00	2.21	20.0	0
	HSM calibration	52	31.0			1.678	0.14	0.90	7.1	2%
00	Calibration function	52	56.1	0.9375 (0.2568)	2.2908 (0.6165)	0.926	0.00	0.89	8.7	2%
ID -	HSM calibration	213	97.3			2.189	0.00	3.62	49.0	44%
	Calibration function	213	250.6	0.9496 (0.3205)	0.9954 (0.4092)	0.850	0.00	3.62	48.9	42%

Table 5-51: Calibration/Validation Results for 4ST Intersections

6 REVISITING THE HSM CALIBRATION APPROACH

6.1 APPROACHES CONSIDERED

6.1.1 Background on HSM Approach

The development of new models for the HSM, taken together with research conducted since its release in 2010 on key issues pertaining to the calibration procedure, provided the need and the opportunity to revisit that procedure in this research project with a view to updating it. The key issues, which are interrelated with others, pertain to the sample size for calibration data and to whether and how to capture the variation of the calibration factor with site characteristics. To address the latter issue, we investigated a procedure based on calibration functions.

A review of the research on establishing minimum sample sizes and estimating calibration functions, along with the results of an empirical investigation in this project, led to the proposed calibration procedure update documented here. The research review suggested that required samples will, indeed, vary across site types, jurisdictions, and crash types and severities. In particular, a consensus seemed apparent that the desirable minimum suggested in the HSM of 30–50 sites with at least 100 crashes a year might not be universally applicable. The research carried out since 2010 has not, however, provided any consistent guidance on what does constitute an appropriate sample. In some cases, recommended sample sizes are so large that a jurisdiction may be better off acquiring (or hiring) personnel with the skill sets required to estimate their own models directly rather than calibrate an external one. The sample size guidance in the procedure recommended here is based on a report by Bahar et al. (2014); even so, sample sizes based on that guidance are not directly estimated but, rather, are determined through an iterative assessment of the accuracy of the calibration factor.

The empirical investigation pursued in this project, in essence, evaluates the guidance in Bahar et al. (2014) by using various sample sizes in assessing and comparing combinations of the following three options that include exploration of calibration functions:

- A) Estimating a single calibration factor (C)
- B) Estimating a calibration function
- C) Directly estimating a model using the calibration data

We performed different sets of analyses pertaining to these assessments and comparisons for four representative site types. For all analyses, we estimated a constant calibration factor using the HSM methodology as the sum of the model predictions divided by the sum of the observed crashes for the calibration data. We also estimated a calibration function in the following form, based on research by Srinivasan et al. (2016):

 $N_{\text{predicted}} = a \times (\text{Unadjusted Prediction})^{b}$ (6-1)

This function, in effect, allows the calibration factor to vary from site to site, depending on site characteristics that affect the crash prediction, most notably traffic volume.

We applied two alternative approaches for this investigation, as described below.

6.1.2 Approach 1

We used three representative site types for this investigation: urban four-lane divided segments; urban two-lane divided segments; and rural two-lane, three-leg stop-controlled intersections. The final models estimated and presented in earlier chapters were calibrated to randomly selected sites from another jurisdiction to increase sample sizes. We also directly estimated models with model forms identical to those being calibrated, with the exception that we used a constant overdispersion parameter.

The logic behind this "iterative" approach was that, at small sample sizes, applying either a calibration factor or function to an original model would prove superior to using a directly estimated model. As sample sizes increased, there would be a point at which a directly calibrated model would perform better. At the other end of the spectrum, there would also be a point at which the sample size would be too small even to estimate a reliable calibration factor.

We evaluated the performance of a calibrated model using several criteria provided by the FHWA Calibrator spreadsheet tool (Lyon et al. 2016). The guidance this tool provided indicated a calibrated model is reasonable if either the coefficient of variation (CV) of the estimated calibration factor is 0.15 or less or if a cumulative residuals (CURE) plot for the fitted values has fewer than 5 percent of the data points outside of the two standard deviation limits. Other goodness-of-fit measures provided by the tool include the mean absolute deviation (MAD), modified R², a calibrated constant overdispersion parameter, and the maximum deviation from zero of the CURE plot for the fitted values.

6.1.3 Approach 2

This investigation assessed the temporal and spatial transferability and calibration of the models. In this case, all of the data available for the calibration were used rather than samples of various sizes. The site type investigated was multilane rural highways.

6.2 APPROACH 1 RESULTS

6.2.1 Urban Four-Lane Divided Segments

We calibrated the model we developed for total crashes and average conditions using data from Ohio to randomly selected sites from Minnesota for increasing sample sizes.

Table 6.1 presents the results of the investigation for urban four-lane divided segments. It shows the number of sites and total crashes used and includes a number of measures, among them the calculated calibration factor (C) and its coefficient of variation (CV), the parameter estimates of the calibration function (a and b in Equation 6.1), and the goodness-of-fit measures, and it compares the three options as provided by the Calibrator tool.

A number of observations can be made from the results in Table 6-1:

- 1. For the three sample sizes investigated, the goodness-of-fit statistics are reasonably similar.
- 2. The maximum calibration factor CV value of 0.15 recommended in the Calibrator tool guidance is not reached until a sample size of 100 sites and 271 crashes. Most interesting is that, at smaller sample sizes, a model directly estimated for the Minnesota data was successful, and the goodness-of-fit statistics for all three options were comparable. This would seem to indicate that even if the CV is higher than 0.15, a directly estimated model may still be feasible.

- 3. The calibration function does perform better in general than a calibration factor, although the differences are not very large for these data.
- 4. The percentage of data points beyond the two standard deviation limits of the CURE plot for fitted values increases as the sample size increases. This may indicate that at small sample sizes the percentage outside these limits may be small simply due to the small sample.

6.2.2 Urban Two-Lane Undivided Segments

The model for total crashes and average conditions developed using data from Ohio was calibrated to randomly selected sites from Minnesota.

Table 6-2 shows the results of the investigation for urban two-lane undivided segments. From them, the following observations can be made:

- With 25 sites, the directly estimated model and calibration function models did not converge. Surprisingly, however, the calibration factor of 0.14 had a lower CV than the 50-site sample and would be considered acceptable per the Calibrator tool guidance. All of the goodness-of-fit statistics look impressive at first glance, but this is deceptive, as the sample size is only 59 crashes. A modified R² of 0.96, for example, is unrealistically high.
- 2. With 50 sites, although the CV is greater than the 0.15 threshold, the calibration function measures are slightly better than those for the directly estimated model, except for the CURE plot measure of data points outside the two standard deviation limits for the predicted values, for which there is a tie.
- 3. With 75 sites, the calibration factor and function perform better than the directly estimated model, with the exception of the overdispersion parameter measure. The goodness-of-fit statistics are worse than for the 50-site sample, and the CV of 0.16 is just over the 0.15 threshold.
- 4. The results for 100 sites are similar to those for 75 sites.
- 5. As was seen for urban four-lane divided segments, the percentage of data points outside the two standard deviation limits of the CURE plot for the fitted values increases as the sample size increases.

6.2.3 Rural Two-Lane, Three-Leg Stop-Controlled Intersections

We calibrated the model for total crashes and base conditions developed using data from Minnesota (a total of seven years of crash data) to randomly selected sites from Ohio (a total of five years of crash data).

Table 6-3 shows the results of the investigation for rural two-lane, three-leg stop-controlled intersections. A number of observations can be made from these results:

- 1. For all four sample sizes, the goodness-of-fit statistics are reasonably similar.
- 2. The maximum calibration factor CV value of 0.15 recommended in the Calibrator tool guidance is not reached until a sample size of 125 sites and 247 crashes is reached. Most interesting is that a model directly estimated for the Ohio data was successful at smaller sample sizes, and the goodness-of-fit statistics for all three options were comparable. This would seem to indicate that even if the CV is higher than the 0.15 threshold, a directly estimated model may still be feasible even with smaller sample sizes.
- 3. The calibration function does perform better in general than a calibration factor, although the differences are not very large for these data.
- 4. The percentage of data points beyond the two standard deviation limits of the CURE plot for fitted values increases as the sample size increases for the calibration factor option (Option A). This may

indicate that at small sample sizes the percentage outside these limits may be small simply due to the small sample.

6.3 APPROACH 2 RESULTS

The investigation for this approach and site type involved an assessment of the temporal and spatial transferability and calibration of the models based on the CV of the calibration factor. In this case, we used all of the data available for the calibration rather than samples of various sizes.

First, we applied Texas 2012 data for calibration of the SPFs, using Texas 2009–11 data for undivided highway segments. Table 6-4 shows the results. Then, we used Ohio 2009–11, Washington 2009–11, and Illinois 2009–10 data for calibration of the California SPFs for divided highway segments. The results are shown in Table 6.5.

The results in Table 6-5 indicate that, for Ohio and Illinois, the calibration function would provide predictions similar to those provided by a single calibration factor, since parameter b (Equation 6.1) was close to 1.0. No insights could be obtained on sample sizes of sites and crashes, as the results were not only inconsistent but very jurisdiction-specific. The lowest MAD value, for example, was for the data with the largest number of sites but the fewest crashes and the highest value of the CV of the calibration factor.

The temporal calibration results in Table 6-4 show parameter b of the calibration function was also close to 1.0, but even with a relatively large sample of sites and crashes for the same state, the CV of the calibration factor was beyond the threshold of 0.15 recommended for a successful calibration.

No	Observed	C	Calibration Function Parameters		MAD			Μ	odified	R ²	overdispersion parameter			CURE max dev			CURE % dev		
INO. Sitos	Crashes	(CV)			Option [*]		Option			Option			Option			Option			
Siles	Crashes		a (s.e.)	b (s.e.)	Α	В	С	А	В	С	А	В	С	А	В	С	Α	В	С
50	140	1.48 (0.24)	0.4296 (0.2277)	0.9859 (0.2735)	2.28	2.28	2.10	0.16	0.16	0.26	0.97	0.97	0.96	19.02	18.61	20.57	4	4	2
75	161	1.11 (0.17)	0.0222 (0.1811)	1.1183 (0.1974)	1.63	1.66	1.66	0.32	0.29	0.29	0.56	0.57	0.56	9.99	14.38	18.75	17	7	5
100	271	1.25 (0.15)	0.4178 (0.1324)	0.8995 (0.1415)	2.22	2.13	2.20	0.00	0.12	0.00	0.66	0.63	0.64	52.83	41.28	50.13	21	15	20

Table 6-1: Results for Urban Four-Lane Divided Segments

*A) Estimating a single calibration factor (C); B) Estimating a calibration function; C) Directly estimating a model using the calibration data

Table 6-2: Results for Ur	ban Two-Lane I	Undivided Segments
---------------------------	----------------	--------------------

No	Observed	C	Calib Fune	Calibration Function		MAD		M	odified	R ²	overdispersion parameter			CURE max dev			CURE % dev			
INO. Sites	Crashes	(\mathbf{CV})	Parameters		Option [*]				Option			Option			Option			Option		
Sites	Crashes		a (s.e.)	b (s.e.)	Α	В	С	Α	В	С	Α	В	С	Α	В	С	A	В	С	
25	59	1.39 (0.14)	n/a	n/a	1.20	n/a	n/a	0.96	n/a	n/a	0.02	n/a	n/a	3.95	n/a	n/a	4	n/a	n/a	
50	137	1.15 (0.20)	0.3374 (0.2004)	0.8394 (0.1949)	1.96	1.92	1.97	0.43	0.48	0.43	0.60	0.57	0.60	21.13	13.68	21.25	4	2	2	
75	186	1.15 (0.16)	0.3786 (0.1641)	0.7642 (0.1740)	1.82	1.74	1.85	0.35	0.44	0.14	0.68	0.63	0.59	17.76	11.57	31.24	9	3	31	
100	232	1.15 (0.16)	0.1846 (0.1513)	0.9945 (0.1749)	1.69	1.69	1.73	0.31	0.31	0.18	0.69	0.69	0.62	22.86	22.44	38.74	16	16	26	

*A) Estimating a single calibration factor (C); B) Estimating a calibration function; C) Directly estimating a model using the calibration data

No	Observed	C	Calibration Function		MAD		M	odified	R ²	overdispersion parameter			CURE max dev			CURE % dev			
Sites Crashes		(\mathbf{CV})	Paran	Option [*]		Option			Option			Option			Option				
		(CV)	a (s.e.)	b (s.e.)	Α	В	С	Α	В	С	Α	В	С	А	В	С	Α	В	С
50	97	1.31 (0.23)	1.7636 (0.1637)	0.4575 (0.1848)	1.71	1.63	1.64	0.00	0.19	0.18	0.94	0.71	0.72	19.93	4.73	4.71	46	1	2
75	145	1.22 (0.21)	1.5785 (0.1452)	0.5806 (0.16)	1.74	1.68	1.69	0.22	0.22	0.24	0.88	0.79	0.79	21.45	41.28	16.53	46	1	1
100	194	1.23 (0.18)	1.63 (0.123)	0.5482 (0.1413)	1.77	1.67	1.67	0.11	0.19	0.26	0.91	0.77	0.72	37.17	15.33	13.63	49	1	2
125	247	1.29 (0.15)	1.6714 (0.1051)	0.5797 (0.1249)	1.74	1.65	1.65	0.09	0.22	0.24	0.80	0.68	0.66	44.67	16.09	17.74	58	1	1

Table 6-3: Results for Rural Two-Lane Three-Leg Stop-controlled Intersections

*A) Estimating a single calibration factor (C); B) Estimating a calibration function; C) Directly estimating a model using the calibration data

Table 6-4: Calibration results using Texas 2012 data for calibration of SPFs using Texas 2009-2011 data for undivided highwaysegments

Data	Crash	Observed	HSM	MAD	Calibr (H	ation Facto ISM, 2010)	r (C)	Calibration Function $N_{predicted} = a \times (Unadjusted Prediction)^{b}$				
	Type	Clashes	Fieu.		C (CV)	N Fitted	MAD	a (SE)	b (SE)	N Fitted	MAD	
TX 2012	Total	105	222.20	0 5 9 2	0.836	105	0 5 4 2	0.825	0.838	199.064	0 5 5 4	
(n=402)	КАВСО	195	255.20	0.565	(0.211)	195	0.542	(0.089)	(0.084)	100.904	0.554	

Table 6-5: Calibration results using Ohio, Washington, and Illinois data for calibration of California SPFs for divided highway segments.

	Creak	Observed	HSM Pred.	MAD	Calib	ration Factor	· (C)	Calibration Function $N_{predicted} = a \times (Unadjusted Prediction)^{b}$					
Data	Type	Crashos				HSM, 2010)							
	Type	Crashes			C (CV)	N Fitted	MAD	a (SE)	b (SE)	N Fitted	MAD		
ОН	Total	956	966 12	1 2/10	0.988	956	1 2/15	0.991	1.003	961 064	1 246		
(n=407)	КАВСО	020	000.12	1.540	(0.100)	(0.100) 856		(0.066)	(0.058)	801.004	1.540		
WA	Total	720	441 15	2 007	1.655	720	1 0 7 0	1.969	0.848	722.060	1 0 2 0		
(n=216)	КАВСО	750	441.15	2.007	(0.144)	/50	1.978	(0.141)	(0.065)	755.000	1.959		
IL	Total	170	222.75	0.462	0.727	170	0.412	0.747	1.046	160.461	0.411		
(n=592)	КАВСО	170	233.75	0.463	(0.210)	170	0.413	(0.102)	(0.131)	109.401	0.411		

6.4 CONCLUSIONS ON CALIBRATION EXERCISE

6.4.1 **Summary of Findings**

The results of the analyses indicate no consistency with regard to which option (calibration factor, calibration function, or directly estimated model) will perform best for a given sample size. For some cases, a small sample that is estimated using some criterion (for example, maximum CV of the calibration factor) may work; for others, it may not. What sample size will work is also highly variable, and dependent on factors including the average crash rate and amount of variation of site characteristics in the data.

It is concluded that, at present, the required sample size for any of the calibration options can only be determined by trial and error, and the current HSM sample size guidance and subsequently developed resources (Bahar et al. 2014) can provide reasonable practical limits for the amount of data that may practically be collected for the start of a calibration exercise.

Other key calibration issues were investigated but could not be resolved in this research. They included the following:

- Should the calibration factor be estimated for the base models rather than for the HSM algorithm as a whole (that is, applying CMFs to the base models), as is the case at the moment? The recommendation is to maintain the status quo for site types, crash types, and crash severities for which there are enough CMFs to apply the algorithm, and to conduct further research on this topic. For situations in which there are few or no CMFs, the recommendation is to estimate the calibration factor from the base models.
- 2) Should the overdispersion parameter be calibrated? The current HSM methodology does not suggest this. It is recommended that future research consider basing this decision on an estimate of the standard deviation of the calibrated overdispersion parameter. Future research will also need to consider how the overdispersion parameter should be calibrated for a calibration function.

6.4.2 Recommended Calibration Procedure Update

On the basis of these conclusions, the following is recommended as an updated calibration procedure as depicted in Figure 6-1.

- 1. For site types, crash types, and crash severities for which there are enough CMFs to apply the HSM algorithm, perform the calibration for the algorithm as a whole (that is, by applying CMFs to the base models). For other situations, perform the calibration for the base models.
- 2. Start with an available sample that is desirably random and at least as large as that recommended in the HSM.
- 3. Perform the calibration first with a constant calibration factor. The FHWA Calibrator tool can be used.
- 4. Assess the success of the calibration. The user guide for the FHWA Calibrator tool provides guidance on how success can be assessed with CURE plots and the CV of the calibration factor. The latter measure is estimated and assessed in the Calibrator tool based on guidance provided in Bahar et al. (2014), Appendix B. That guidance can be used instead of the tool.
- 5. If the sample is insufficient, then incrementally assemble additional data for additional sites and assess until a successful calibration is achieved.

- If a successful calibration cannot be achieved with the entire sample available for *total* crashes, then the calibration results for a similar site type (from which a successful calibration was achieved) may be assumed to apply.
- If a successful calibration cannot be achieved with the entire sample available for a *specific crash type or severity*, then the calibration results for total crashes, however obtained, may be assumed to apply.
- 6. Estimate a calibration function using the approach in Srinivasan et al. (2016), and adopt it in preference to the calibration factor, if it is successfully estimated and performs better.
- 7. If appropriate skills are available or could be acquired, it is recommended to try to estimate directly a model with the final calibration dataset and adopt it if it is successfully estimated and performs better than the calibration factor and calibration function. The FHWA Calibrator tool can be used in this performance assessment.

*If calibration is being done for base models and appropriate skills are available or could be acquired, it is recommended to try to directly estimate a model with the final calibration dataset and adopt the model if successfully estimated and performs better than the calibration factor and calibration function.

Figure 6-1: Suggested Calibration Process

Copyright National Academy of Sciences. All rights reserved.

7 FINDINGS AND CONCLUSIONS

7.1 PROPOSED MODELS AND PROCEDURES FOR MANUAL

This report presents SPFs that were estimated to predict crashes by type and severity for the facility types covered by the HSM. To optimize the accuracy of the crash predictions, it would have been ideal to estimate SPFs for all of the crash types and severities need as base conditions for applying CMFs. Unfortunately, because the numbers of crashes of various types and severities were limited in the databases available for the project, we could not estimate models for all the specific types—for example, for head-on and rear-end crashes within the opposite- and same-direction crash type categories, respectively. Some models also have overdispersion parameters high enough to cast doubt on their accuracy for prediction or coefficients on the volume predictors (AADT) that are not statistically significant at 90 percent confidence. We address these cases by reporting average proportions of specific crash types within the broader crash type category for which models were estimated. These proportions can be used where the predicted models are not available, or where the analyst chooses not to use them. This approach will still be more accurate than that provided in the current HSM.

While the initial scope of work had proposed to estimate probabilistic models for crash severity, based on theoretical and practical considerations about the application of such models in the HSM procedures, we chose not to use this approach. Predictions of crash severity may be calculated using the count models for severity that have been estimated and presented here.

The data sources for estimation and validation for each model by facility are listed in Table 7-1. The rest of this section identifies the models that were estimated and will be proposed for inclusion in the HSM, by facility type. It also lists the crash types and severity for which models were NOT estimated, for each facility type that might require proportions to be estimated. For these situations, we provide default proportions from the data for each facility type, although individual jurisdictions may calculate proportions from their own data for more accurate local predictions. Finally, the section summarizes findings from revisiting the calibration procedures in the HSM in light of the newly estimated models.

Facility Type	Road Segments Estimation	Road Segments Validation	Intersections Estimation	Intersections Validation
Two-lane rural	Washington	Ohio	3ST&4ST: Minnesota	3ST&4ST: Ohio
highways	washington	Unio	4SG: Ohio	4SG: Minnesota
Multilane rural highways	4U: Texas [*] 4D: California	4U: Texas [*] 4D: Illinois, Washington	3ST&4ST: Minnesota 4SG: Ohio	3ST&4ST: Ohio 4SG: Minnesota
Urban/suburban arterials	Ohio	Minnesota	Ohio	North Carolina

 Table 7-1: Data Sources (States) for SPF Estimation and Validation, by Facility Type

^{*}Data from 2009–11 were used for estimation and from 2012 for validation.

7.1.1 **Two-Lane Rural Highway Models**

Figure 7-1 identifies the crash models estimated for segments on two-lane rural highways. SPFs were estimated for four levels of severity (KABCO, KABC, KAB, and KA) for total, same-direction, opposite-

direction, and single-vehicle crashes. Models for intersecting-direction crashes were not estimated, as they were all assigned to intersections.

Figure 7-2 lists the specific crash types included in each of the broader crash type categories that were estimated. Total crashes include all of these crash types. If predictions of crashes of any of these specific types are needed for applying CMFs, proportions of them within the aggregate crash types (those in the left column of the figure) will be required and provided in the proposed HSM content.

Figure 7-3 illustrates the crash models estimated for intersections (all types) on two-lane rural highways. Models were estimated for intersecting-direction crashes as well as for the types estimated for segments and for the same four levels of severity.

Similarly, Figure 7-4 lists the specific crash types included in each of the broader crash type categories that were estimated for two-lane rural highway intersections. Again, total crashes include all of these crash types, and their proportions within the aggregate crash types will be required for estimating them.

Figure 7-1: Crash Types Estimated for Segments on Two-Lane Rural Highways

Figure 7-2: Specific Crash Types Included in the Estimated Crash Types (Rural 2U).

Figure 7-3: Crash Types Estimated for Intersections on Two-Lane Rural Highways.

Copyright National Academy of Sciences. All rights reserved.

Figure 7-4: Specific Crash Types included in the Estimated Crash Types (Rural 3ST, 4ST and 4SG)

7.1.2 Multilane Rural Highway Models

Figure 7-5 identifies the crash models estimated for divided and undivided segments on multilane rural highways. Models were estimated for the same combinations of type and severity as for two-lane rural highways, with two exceptions. First, due to the small number of same-direction KA crashes, we could not estimate a model for that combination. Second, we attempted models for intersecting-direction crashes for all severity levels, but due to the small number of crashes, only the model for all severity levels was successfully estimated. Figure 7-4 lists the specific crash types included in each of these aggregated types (same as for two-lane rural highway intersection models). Again, the total crash category includes all of the crash types and proportions that will need to be computed for any specific crash types of interest within the broader categories for which models were estimated.

Figure 7-5: Crash Types Estimated for Divided and Undivided Segments on Multilane Rural Highways

Intersection models cover the same crash types as for rural two-lane highway intersections, as depicted in Figure 7-3 and Figure 7-4.

7.1.3 Urban/Suburban Arterial Models

Final base condition models were estimated for urban/suburban arterial segments for the following crash types:

- Total
- KABC
- KAB
- KA
- Multiple-vehicle non-driveway related
- Rear end
- Sideswipe same direction
- Head-on + sideswipe opposite direction
- Multiple-vehicle non-driveway other
- Single vehicle
- Nighttime
- Multiple-vehicle driveway

Note that crashes were estimated by type or severity level, not in combination, as was done for the rural facility types. The reason for this is that, for many combinations of crash type and severity, there simply were not enough crashes to estimate viable models. The combination of crash type and severity is not frequently needed to apply HSM methods, so it is recommended that when predictions of such combinations are needed, proportions may be calculated to allocate crash type predictions among the various severity levels.

For urban/suburban intersections, we estimated models for the same combinations of crash type and severity as for the rural intersection facilities (see Figure 7-3). As noted, however, models for many of the combinations could not be estimated due to small sample sizes or odd estimation results. Figure 7-6 depicts the combinations that could not be estimated for each type of intersection.

Figure 7-6: Crash Type and Severity SPFs that Were Not Estimated for Urban/Suburban Intersections

Copyright National Academy of Sciences. All rights reserved.

7.1.4 Revisit of the Calibration Procedure

The project team revisited the current HSM calibration procedure and evaluated its performance relative to sample size and to using a constant or variable calibration factor (or calibration function). In addition, we considered the issues of calibrating models based on crash predictions with and without CMFs and calibration of the overdispersion parameter. The recommendation is to continue the current procedure in the HSM of calibrating with the CMFs, assuming most of the CMFs for doing so are available. Otherwise, as may be the case for many crash type and severity models at the moment, the calibration may be done without applying CMFs. The issue of calibrating the overdispersion parameter requires further research.

The findings show that the calibration results are definitely sensitive to sample size, but not always in ways that might be expected. The calibration function did not work well with small sample sizes because the optimization procedure to estimate it failed to converge. In general, the more complex the calibration approach, the more data are required to apply it successfully. Unsurprisingly, the sample sizes that resulted in the best calibration results would also be large enough to estimate jurisdiction-specific SPFs. This latter option would be preferred, when possible, to get the most accurate predictions for application in a given jurisdiction. But the findings here show that, in many cases, reasonable predictions are also possible following the HSM procedures, with even a constant calibration factor and modest calibration sample sizes.

7.2 CONCLUSIONS

In conclusion, this project has estimated new prediction models for crash types and severity that promise better predictive results than the current HSM-recommended combination of base models for total crashes with proportional factors for allocating among crash type and severity. When sample size permitted, extensive SPFs developed by severity and type are provided for detailed analytics of safety rather than fixed proportions as the current HSM provides. They are estimated with much newer crash data than the models in the HSM, which were estimated using data 10 to 15 years old. These updated models, including ones for total crashes, reflect more current relationships between traffic exposure and crash occurrence, as well as differences in the shape of the SPF viz. the traffic exposure from one crash type or severity level to another. The project has also revisited the predictive method calibration procedure in the HSM and offers refinements to the recommended calibration procedure.

It is noted that estimation and application of crash prediction models is dependent upon having datasets of sufficient size and quality. It was not possible to estimate models for K only crashes for any crash types or in total for any facility type due to the small number of these crashes in any of the data sets. For some crash types, such as same direction crashes, KA crash models also could not be estimated. Some of these crash type and severity combinations are extremely rare due to their nature (e.g., same direction KA crashes), so it is hard to identify future research directions that could overcome this challenge.

It is also noted that many of the roadway characteristic variables that are necessary for estimating and applying these models, for example numbers of driveways of different types and intersection skew angles, are not routinely archived by all transportation agencies. For estimation and validation of these models it was necessary to engage in data collection efforts to augment data provided by the transportation agencies that were used in the project. In order to use these prediction procedures, most agencies will likely need to augment their own data archives with additional roadway characteristics.

This project also provides, in Appendix C, content for incorporating the new estimated models and calibration recommendations into a second edition of the HSM.

8 REFERENCES

Bahar G., E. Hauer. 2014. User's Guide to Develop Highway Safety Manual Safety Performance Function Calibration Factors. Final Report, NCHRP Project 20-07, Task 332.

Cafiso S., G. Di Silvestro, B. Persaud, and M. Begum. 2010. Revisiting Variability of Dispersion Parameter of Safety Performance for Two-Lane Rural Roads. *Transportation Research Record: Journal of the Transportation Research Board*, No. 2148, Transportation Research Board of the National Academies, Washington, DC, pp. 38-46.

Revisiting Variability of Dispersion Parameter of Safety Performance for Two-Lane Rural Roads

Chang, L. and F. Mannering. 1999. Analysis of injury severity and vehicle occupancy in truck- and non-truck-involved accidents. *Accident Analysis and Prevention* 31 No. 5, pp. 579-592.

Dziak, J.J., Coffman, D.L., Lanza, S.T., and Li, R. 2012. Sensitivity and Specificity of Information Criteria, TheMethodology Center, Pennsylvania State University – College of Health and Human Development,TechnicalReportSeries#12-119,StateCollege,(http://methodology.psu.edu/media/techreports/12-119.pdf).

Farid, A., M. Abdel-Aty, J. Lee, N. Eluru and J.-H. Wang. Exploring the transferability of safety performance functions. *Accident Analysis and Prevention* 94, 2016, pp. 143-152.

Golob T., W. Recker and J. Leonard. 1987. An Analysis of the Severity and Incident Duration of Truck-Involved Freeway Accidents. *Accident Analysis and Prevention* 19, No. 5, pp. 375-395.

Hauer, E. (2015 – in press), *The Art of Regression Modeling in Road Safety*, Springer.

Institute for Digital Research and Education, (IDE-UCLA). Accessed December 18, 2014 at <<u>http://www.ats.ucla.edu/stat/sas/dae/negbinreg.htm</u>>.

Ivan, J. 2004. New Approach for Including Traffic Volumes in Crash Rate Analysis and Forecasting," *Transportation Research Record: Journal of the Transportation Research Board*, No. 1897, Transportation Research Board of the National Academies, Washington, DC, pp. 134-141.

Kockelman, K.M. and Y.J. Kweon. 2002. Driver injury severity: an application of ordered probit models. *Accident Analysis and Prevention* 34 (3), pp. 313-321.

Lyon C., Persaud B., and F. Gross. 2016. The Calibrator—Calibrate, Critique, CURE. An SPF Calibration Tool. FHWA DTFH61-10-D-00022-T-13005.

Papke, L. E., and Wooldridge, J. 1993. Econometric methods for fractional response variables with an application to 401 (k) plan participation rates.

SAS/STAT(R) 9.2 User's Guide, Second Edition. Accessed December 18, 2014 at <<u>http://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_genm</u> od sect030.htm#statug.genmod.genmodoverdisp>.

Srinivasan, R., M. Colety, G. Bahar, B. Crowther, and M. Farmen. 2016. Estimation of Calibration Functions for Predicting Crashes on Rural Two-Lane Roads in Arizona. *Transportation Research Record: Journal of the Transportation Research Board*, No. 2583, Transportation Research Board, Washington, DC, pp. 17-24.

Wang, J.-H., M. Abdel-Aty, and J. Lee. 2017. Evaluation of Safety Performance Functions Based on Experimental Design Using Cross-Validation Method. *Transportation Research Record: Journal of the Transportation Research Board*, No. 2636, Transportation Research Board, Washington, DC, 2017.

Wang, J.-H., M. Abdel-Aty, and J. Lee. 2016 Examination of the Transferability of Safety Performance Functions for Developing Crash Modification Factors: Using the Empirical Bayes Method. *Transportation Research Record: Journal of the Transportation Research Board Annual Meeting*, No. 2583, Transportation Research Board, Washington, DC, pp. 73-80.

Washington, S., Persaud, B., Lyon, C. and Oh, J. 2005. *Validation of Accident Models for Intersections*. Federal Highway Administration, United States Department of Transportation, Report No. FHWA-RD-03-037.

Yasmin, S., N. Eluru, J. Lee, and M. Abdel-Aty. 2016. Ordered Fractional Split Approach for Aggregate Injury Severity Modeling. *Transportation Research Record: Journal of the Transportation Research Board*, No. 2583, Transportation Research Board, Washington, DC, pp. 119-126.

Zhang, C., J. Ivan and T. Jonsson. 2007. Collision Type Categorization Based on Crash Causality and Severity Analysis. Transportation Research Board 86th Annual Meeting Compendium of Papers, Paper No. 07-2454, Washington, DC.