Special Study Roadside (RS) Crashes IMPACT Study By David B. Brown (brown@cs.ua.edu) University of Alabama Center for Advanced Public Safety (CAPS) and Alabama Transportation Institute (ATI) Data Comparisons: CY2016-2020 RS vs Non-RS December 2021

Table of Contents

0.0 Introduction	3
1.0 Executive Summary and Recommendations	4
2.0 Summary of Findings	8
3.0 Roadside (RS) crashes CY2016-2020	15
3.1 RS Filter Definition	15
3.1.1 C015 Primary Contributing Circumstances with RS Filter in Effect	16
3.1.2 C017 First Harmful Event	17
3.2 Overall Crashes by Year 2016-2020 Data	18
3.3 Overall Severity Comparisons	19
4.0 Geographic and Harmful Event Factors	21
4.1 County	21
4.2 Cities Over-represented by Highest Max Gains (Including Rural Areas)	22
4.3 Rural or Urban	24
4.4 Severity of Crash by Rural-Urban	25
4.5 Highway Classifications	26
4.6 Locale	27
4.7 Most Harmful Event (ordered by frequency)	28
4.8 Most Harmful Fatal Event; C019 and Fatal	29
4.9 CU Roadway Curvature and Grade	30
5.0 Time Factors	31

5.1 Year	
5.2 Month	
5.3 Day of the Week	33
5.4 Day of the Week Discussion	
5.5 Time of Day	35
5.6 Discussion on Time of Day	
5.7 Time of Day by Day of the Week	
6.0 Factors Affecting Severity	
6.1 RS Crash Severity	
6.2 Speed at Impact	39
6.3 Severity by Impact Speed Cross-Tabulation	40
6.4 Discussion of Severity vs Speed Cross-Tabulation	41
6.5 Restraint Use by Drivers in RS Crashes	
6.6 Crash Severity by Restraint Use (C323) for RS Crash CU Drivers	43
6.7 Number of Vehicles Involved	44
6.8 Police Arrival Delay	45
6.9 EMS Arrival Delay	
7.0 Driver and Vehicle Demographics	
7.1 Driver Age	
7.2 Roadside Crash Driver Gender	
7.3 Causal Vehicle Types with 30 or more Crashes	49
7.4 Number of Pedestrians	50
7.5 Driver License Status	51
7.6 Driver Employment Status	
8.0 Driver Behavior	53
8.1 Primary Contributing Circumstances (RS & Items < 100 Crashes Removed)	53
8.2 Discussion of Primary Contributing Circumstances (PCC) Result Above	54
8.3 CU Driver Officer's Opinion Alcohol	55
8.4 CU Driver Officer's Opinion Drugs	

0.0 Introduction

This document presents the results of a comparison of Roadside (RS) crashes compared to non-RS crashes over a recent five-year period (CY2016-2020). The determination of whether a crash was an RS or not was determined by whether the crash event was preceded by a Run-Off-the-Road (ROR) event. ROR events were determined from either Primary Contributing Circumstances (C015) or First Harmful Event (C017).

The analytical technique employed to generate most of the displays below is a component within the Critical Analysis Reporting Environment (CARE) called Information Mining Performance Analysis Control Technique (IMPACT). For a detailed description of the meaning of each element of the IMPACT outputs, please see: <u>http://www.caps.ua.edu/software/care/</u>

The main objective of performing IMPACT comparisons is to surface "over-representations." An *over-represented value* of an attribute is found (for this study) when that attribute has a greater share of RS crashes than would be expected if its proportion were the same as for the non-RS crashes. That is, the non-RS crashes are serving as a *control* to which the RS crashes are being compared.

As an example, we found that RS crashes for the Day-of-the-Week attribute value of Sunday had almost 71% higher proportion of crashes than did the non-RS crashes (Section 5.3; Odds Ratio = 1.705). When such differences are statistically significant (as in this case), this surfaces characteristics that should be given attention, and in some cases, further analyses performed for countermeasure development. For example, additional selective enforcement for RS causes (e.g., excessive speed) might be performed on Sunday and other days in times at which they have their highest over-representations. Unless otherwise stated, the output tables given above the charts are in *Max Gain* order. The *Max Gain* is the gain in crash reduction that could be obtained if somehow a countermeasure could be applied to reduce the proportion of the RS crashes to the proportion of non-RS crashes within that particular attribute.

This report continues with two short sections that provide a high-level summary of recommendations and findings for those who just need an executive summary. The sections are called: (1) Executive Summary and Recommendations, and (2) Summary of Findings. Section 3 is also introductory in that it provides a detailed definition of the filter that was used to define RS crashes in the analytical sections that follow. After Section 3, the comparison between RS and non-RS crashes will be presented under the following headings with their section numbers:

- 4. Geographic Factors,
- 5. Time Factors,
- 6. Factors Affecting Severity,
- 7. Driver and Vehicle Demographics, and
- 8. Driver Behavior.

See the Table of Contents for a guide to the sections of interest.

1.0 Executive Summary and Recommendations

The recommendations of this special study are presented first for two reasons (1) for those who do not have time to go through all of the IMPACT analyses, and/or (2) as an introduction to these more detailed analyses. Recommendations are referenced to the more detailed analyses so that questions regarding the source of any given recommendation can be easily accessed.

Recommendations are organized into the three areas of: (1) Law enforcement concentration and direction, (2) Legal and judicial countermeasure development, and (3) PI&E information on RS content. The ordering of these, either generally or within their respective categories, is not meant to imply priority. However, the more detailed information given should be quite useful in the further prioritization and allocation of traffic safety resources. This process should consider all of the recommendations, which should be validated against the information presented in the IM-PACT sections 4.0-7.0 (referenced sections will be given in parenthesis).

The following recommendations are made to reduce the frequency and/or severity of Roadside (RS) crashes in Alabama:

• Clear roadside and crash severity mitigation

- Most of the IMPACT analyses (after Section 3) concentrate on driver behavior modifications. It is reasonable that many crashes could either be avoided or their severity reduced by crash clear roadside, cushioning, or other roadway modifications. The following presents a condensed review of the extensive documentation that has been produced by FHWA, AASHTO, and others. It is recommended that all of these documents, and the many others that will be found while accessing these, be reviewed. The resulting information should be formulated into a costbenefit approach to allocate roadside countermeasure funds in an optimal way. It is expected that separate optimizations will be required for each independent source of funds.
 - AASHTO; Roadside Design Guide 10; <u>https://pdflife.one/down-load/4591425-aashto-roadside-design-guide-10</u>
 - FHWA-AASHTO; Roadside Design Guidance including Manual for Assessing Safety Hardware; <u>https://safety.fhwa.dot.gov/roadway_dept/countermeasures/reduce_crash_severity/aashto_guidancecfm.cfm</u>
 - FHWA; Clear Zones (last modified May 21, 2021); https://safety.fhwa.dot.gov/roadway_dept/countermeasures/safe_recovery/clear_zones/; "This document provides guidance to help highway agencies develop their own standards and policies for determining the widths of clear zones along roadways based on speed, traffic volume, roadside slope and curvature. The recommended clear zone ranges are based on a width of 30 to 32 feet for flat, level terrain adjacent to a straight section of a 60mph highway with an average daily traffic of 6000 vehicles.

For steeper slopes on a 70 mph roadway the clear zone range increases to 38 to 46 feet, and on a low speed, low volume roadway the clear zone range drops to 7 to 10 feet. For horizontal curves the clear zone can be increased by up to 50 percent from these figures."

- AASHTO; Clear Zone Conflicts in AASHTO Publications; Presented at the AASHTO Sub Committee on Design Meeting June 2007 Burlington, Vermont; <u>http://sp.design.transportation.org/Documents/DickAlbin_Clear-ZoneinAASHTODocuments-SCOD2007.pdf</u>; "The width of the clear zone should be based on risk (also called exposure). Key factors in assessing risk include traffic volumes, speeds, and slopes. Clear roadsides consider both fixed objects and terrain that may cause vehicles to rollover."
- **Grade and Curvature.** Special emphasis in roadway clear zones should be given to (4.9, in Max Gain order): (1) left curves level and downgrade; (2) right curves level and downgrade; and (3) left and right curves and upgrades.
 - The study of advisory speed limits could benefit from the recent release of GDOT_16-31 (trb.org); An Enhanced Network-Level Curve Safety Assessment and Monitoring Using Mobile Devices; GDOT_16-31 (trb.org); http://www.safehomealabama.gov/tag/road-improvements/

• Law enforcement concentration and direction

- Increased recognition is essential, both on the part of law enforcement and the general public, that the relatively high deadly combination in RS crashes is caused by their comparatively high impact speeds (6.1, 6.2) coupled with a failure of RS crash drivers and their passengers to use restraints (6.5, 6.6). Seek out new ways to increase law enforcement methods to address these issues, both of which stem from the acceptance of risk-taking behaviors, especially on the part of younger drivers (age less than 25).
- Since a relatively large proportion of RS crashes are caused by Impaired Driving (ID), all of the ID countermeasures (8.3, 8.4) should be increased. Hotspot analyses should be performed to determine where RS selective enforcement will be most effective, and consideration should be given to using RS as a proxy for ID.
- More effective drug detection techniques (8.4) should be identified, and law enforcement officers need increased training in their use.
- Law enforcement training should focus on the concentration on the times of day, days of the week (5.3-5.7), and the particular over-represented vehicle types e.g., Passenger Cars and Motorcycles (7.3).
- Training needs to focus on the specific driver over-representations: 1) males (7.2),
 2) age groups (7.1, ages 24-35), 3) the locations that these over-represented groups (determined by hotspot analyses); and 4) the over-represented times.
- Counties with a combination of medium to large metropolitan areas and fairly large rural areas (4.3, 4.6) should generally be given additional emphasis in RS selective enforcement programs (4.1, 4.2). These should be evaluated on a county-by-county basis taking the population and traffic volume crash rates into

consideration. Over-represented cities and counties should be subjected to Hotspot analyses.

- The rural areas (4.6) of these counties, and especially the County Roads (4.5) should be given special consideration for enforcement, since that is where relative increased fatalities occur (4.4, 4.8).
- Those cities with a high frequency of RS crashes (4.2) should be given special guidance and perhaps additional funding to address their RS crash problems. Many such large city areas have a considerable amount of Open Country (4.6) that would tend to multiply their RS crash severiy. It should be recognized that Residential areas of these cities also have a significant RS over-representation, but it is only about a third of that of Open Country areas (4.6)
- Additional hotspot analysis needs to be done to surface those County Roads (4.5), which account for their overall 66.9% over-representation in crash proportion, in order to focus law enforcement presence on these roads. It appears that impaired RS causal drivers may be using the county roads in attempts to avoid being apprehended.
- Additional emphasis needs to be given to the recognized RS over-represented days, Saturday, Sunday, and to some extent Friday (5.3). Special 3-day holiday attention needs to address irregular days such as Sunday, which behave as a "virtual Saturday" when the three-day holiday weekend includes Monday (5.4-5.7). Consideration should be given to the number of persons not working on a given day and thus might over-indulge the night (and early morning) before (5.3-5.4) their day off.
- The increase in RS crashes in the springtime (5.2, March, April and July) should be recognized in general law enforcement strategic planning.
- Time for enforcement might be optimized by local culture, but for the average statewide picture, if workers are typically "off' the following day, the optimal times for enforcement would begin shortly after the Friday afternoon rush hour and continue through at least 3 AM (5.5-5.7).

• Legal and judicial countermeasure development

- Drug/Alcohol Diversion Programs should continue (or new programs adopted) that concentrate on keeping the age 25 through 35 (typically *social users*) from becoming habitual to the point where they become part of the 36-55-year old over-representation of predominantly *problem users* (7.1).
- The role that unemployment plays should be considered in formulating remedial measures (7.6). Methods should be explored to communicate with appropriate individuals through their respective unemployment offices. The relationship between RS crashes and unemployment is not surprising because of the underlying drug/alcohol root cause of many RS crashes (8.3-8.4). The correlation between not having a job and being involved in an RS crash should be watched carefully going forward in that it could affect the type and location for countermeasures.

Ideally, breath-alcohol ignition interlock devices are greatly reducing the problem caused by problem drinkers in Alabama. An in-depth study needs to be conducted to determine if problems exist within the current program, and how this countermeasure can be expanded to be made more generally effective. While the data do not show a high level of drugs/alcohol causing RS crashes directly, (8.3-8.4) the fact that they are over-represented is an indication that this could be a cause even if the presence of drugs/alcohol do not reach the reporting threshold, especially in cases involving prescription drugs.

• PI&E information content on RS crashes

- Combinations of recreational or medical drugs and alcohol can be particularly lethal, and medical practitioners should warn against such problems and discourage all alcohol use for their patients who have indicated or displayed these problems, or who are taking other prescription drugs.
- Legalized recreational drugs are not a good alternative to alcohol use and should not be advertised as such. PI&E programs should take the opposite approach to warn drivers that legalization does not relax their responsibilities.
- Promote the use of those roadways that avoid county roads, which have 66.9% more RS than non-RS crashes. While Interstates are also over-represented (by 12.4%), the largest cause of these crashes is Driving too Fast for Conditions and other speed-related behaviors, driver errors that can be avoided easily. The promotion of Interstates should also contain warnings against speeding.
- One of the most critical needs is for the RS drivers and their passengers to buckle up (6.6). There is little hope of surviving a crash for a large proportion of them if they fail to realize this. This is seen not only in increased fatal crashes, but in the number of injured in single-vehicle crashes (6.7).
- While clearly the problems found in this study are those of RS, other driver behaviors (8.2) that are correlated with RS might provide alternatives for countermeasure development. These behaviors are:
 - Aggressive Operation,
 - Traveling Wrong Way/Wrong Side,
 - Over Speed Limit,
 - Fatigued/Asleep,
 - Ran Stop Sign and
 - Crossed Centerline.

These were the Primary Contributing Circumstances that were over-represented exclusive of RS even though the standard RS filter was in effect (indicating that RS was identified by attributes other than that of PCC (i.e., First Harmful Event).

2.0 Summary of Findings

Note: subsections 2.1, 2.2 and 2.3 have been omitted in order to keep the numbering system in this Section consistent with that of the IMPACT displays that follow. The following findings are mainly from the IMPACT analysis below that compared RS vs Non-RS crashes for all five years (CY2016-2020):

• 2.4 Geographical Factors (4.0)

- County (4.1) Generally, the over-represented counties are those with combined fairly large population centers bordering on rural areas, as opposed to the highly urbanized counties or the extremely rural counties. One reason that the highly urbanized counties are under-represented is the large number of low severity crashes that occur there that are separate and apart from RS crashes. See the rural-urban comparison below. Placed in Max Gain order, the ones with the highest potential for reduction were: Etowah, St. Clair, Clarke, Jackson, Chambers and Chilton. [Terminology: *Expected proportions* (AKA *expectations*) here and below are obtained from the proportion for non-RS crashes.]
- City Comparisons of RS to Non-RS crashes, including rural areas of counties (virtual cities). There is little surprise in this output, which tracks the areas by population. Traffic safety professionals should look for any locations that fall counter to this trend. City (and rural area) Comparisons are presented for all areas that had a Max Gain in excess of 100 RS crashes over the five-year period of the study. The county rural areas (virtual cities) with Max Gains in excess of 160 RS crashes over their expected numbers are: Rural Randolph, Rural Etowah, Rural Clark, and Rural Jefferson.
- Overall Area Comparisons Conclusions (4.1-4.2) Generally those rural areas that are adjacent to (or contain) significant urbanized areas are over-represented, since their urban areas generate more traffic in the rural areas. Possible factors for *relatively fewer severe RS crashes* within urban areas include:
 - Less need for motor vehicle travel and shorter distances;
 - Larger police presence in the metropolitan areas; and
 - Lower speeds in urban areas.

Note: The city, county, and area comparisons are, of necessity, a selection of the total outputs that could be generated. They are given to illustrate the capabilities as much as to present the numerical results. Anyone wishing additional cities, counties, or other areas, please contact CAPS – see e-mail address above.

Rural/Urban RS Crash Proportion (4.3) – RS crashes appear in a proportion that is only slightly different from their non-RS counterparts. RS crashes occurred in 22.23% rural and 77.77% urban areas. While the large sample sizes indicate that the differences with the non-RS are statistically significant, the very close non-RS proportions (22.93% and 77.07%, respectively) is not of practical significance.

Thus we conclude that the number of RS crashes is mainly determined by the traffic volume and not the rural/urban environments.

- Severity of Crash by Rural-Urban (4.4) While only 22.23% of crashes occurred in rural areas, 38.51% of the fatal crashes occurred there. Similar results are found for the highest severity non-fatal crashes. This is obviously the result of higher impact speeds in the rural areas. Note that additional causes of increased severity are given in the Factors Affecting Severity, Section 6, below.
- Highway Classifications (4.5) County roads had a proportion of RS crashes that was 66.9% higher than their expected proportion of crashes (as given by the non-RS crashes), and Interstate routes had about 12.4% more than expected. Municipal Roads, which had 41.56% of all of the RS crashes, were only over-represented by 3.1% due to the large amount of traffic in the urban areas. All other roadway classifications were under-represented. County road characteristics no doubt contribute to the crash frequency (see 4.4). County roads are also known to be less "crashworthy" (i.e., they result in more severe crashes at comparable impact speeds).
- Locale (4.6) Residential and Open Country roadways show a high level of overrepresentation (1.941 and 1.430 Odds Ratios, respectively) as compared with the more urbanized area types, especially Shopping or Business, which only has a little over a third of its expected proportion.
- Most Harmful Event (4.7) ordered by frequency. The goal of ordering by frequency is to indicate where the removal of roadside obstacles might be most effective (4.9). The following items were fixed roadside obstacles that have over 500 occurrences in five years (at least 100 per year):

Overturn/Rollover	2,958
Collision with Tree	2,825
Collision with Ditch	2,133
Collision with Utility Pole	1,351
Collision with Other Fixed Object	879
Collision with Fence	517

- Most Harmful Fatal Event (4.8) ordered by Max Gain. Collision with Tree was by far the greatest problem with 202 fatal crashes and an Odds Ratio of 2.648. Overturned/Rollover was a distant second with 136 fatal crashes and an odds ratio of 1.891. After that, the frequencies and/or over-representations fell off dramatically.
- Roadway curvature and Grade (4.9). RS crashes are dramatically over-represented on all types, and especially left curves. Left curves either Level or with Down Grades are generally more of a problem than right curves with the same grades. Level and down grades are more of a problem than up-grades.

• 2.5 Time Factors (5.0)

- Year (5.1) The years 2017, 2018 and 2020 were over-represented. There seems to be no pattern either in RS or non-RS over the five years.
- Month (5.2) The only significant over-representations by month were in January, June, July. And December. The number of RS crashes correlated fairly well with non-RS crashes during the rest of the months, with the exception of September, October, and November, which were significantly under-represented.
- Day of the Week (5.3-5.4) This analysis is not only useful for the typical work week, but it also reflects the typical "holiday weekend" patterns. Traffic safety professional will notice that the distribution throughout the week is quite similar to that of impaired driving. Since many RS crashes are caused by ID, that would create this distribution for RS as well. However, this pattern is further reinforced by drivers who are not familiar with the new roads that they might be traveling, especially if they are in any way deficient in design. Assuming that a significant number of RS crashes are caused by ID, the days can be classified as follows:
 - Typical work weekday (Monday through Thursday) these days are under-represented in RS crashes due to the need for many users to go to work the following day.
 - Friday this pattern is also reflected in the day before a weekend (or holiday), i.e., before a day off. The high RS frequency on this day is due to those who are getting an early substance abuse start to the weekend, recognizing that they have no work responsibilities the following day. However, the large numbers of non-RS crashes on Fridays causes Friday to be statistically under-represented in RS crash proportion compared to non-RS crashes. This is the typical Friday general increase due to the normal rush hours coupled with individuals leaving for vacations and weekend activities.
 - Saturday the "Saturday" pattern is the worse for RS crashes in that it has both an early morning component (like Sunday) and a late night component (like Friday). So, it could be viewed as a combination of the typical Friday and Sunday.
 - Sunday since this is the last day of a holiday sequence or weekend, its over-representation comes mainly from those who start on Saturday night and do not complete their use of alcohol/drugs until after midnight. Sunday is the most over-represented day with over twice its expected number of RS crashes; however, the low number of non-RS crashes on Sunday also contributes to this proportional over-representation.
- "Holiday Weekends" (5.4-5.7) these can be viewed as a sequence of the weekend-pattern sequence. For example, the Wednesday before Thanksgiving would follow the Friday pattern assuming that most are at work on Wednesday. The

Thursday, Friday and Saturday would follow the Saturday pattern, and the Sunday at the end of the weekend would follow the typical Sunday pattern. This is the reason that long holiday events (i.e., several days off) can be much more prone to RS crashes than the typical weekend. Three-day weekends typically give Monday off, so that Monday would behave like the typical Sunday, and both the Saturday and Sunday would follow the Saturday pattern. Exception: in the past decade the over-representation of Wednesdays before Thanksgivings has been reduced by the number leaving earlier during the week.

- Time of Day (5.5-5.6) The extent to which night-time hours are over-represented is quite striking. Optimal times for RS enforcement would start immediately following any rush hour details, and would continue through at least 3:00 to 3:59 AM (odds ratio 4.390). The 4-5 and 5-6 AM hours are also significantly over-represented, but with lower odds ratios of 3.514 and 2.446, respectively. Some of the late-night RS crashes will also be due to drowsiness and/or the diminished ability to see road edge lines.
- Time of Day by Day of the Week (5.7) This quantifies the extent of the crash concentrations on Friday nights, Saturday mornings and Saturday nights and early Sunday mornings. This is a very useful summary for deploying selective enforcement details, especially during the weekend hours.

• 2.6 Factors Affecting Severity (6.0)

- RS Crash Severity (6.1) -- The rate of injuries and fatalities are consistently higher in RS crashes than that of non-RS crashes. Fatality crashes are nearly 2.561 times their expected proportion, while the two highest non-fatal injury classifications also have about twice their expected values (2.000 and 1.806) when compared with non-RS crashes.
- Speed at Impact (6.2) All impact speeds above 45 MPH (with the exceptions of 61-70 and 66-70 MPH) are dramatically over-represented with Odds Ratios above 2.00. See the next attribute for the effect this has on fatalities. The over-representations increase, as expected, with increased speed with 46-50 MPH having an odds ratio or 1.835, while 96-100 MPH being 10.129. Past analyses have found the general rule of thumb that for every 10 MPH increase in impact speeds, the probability of the crash being fatal doubles. This was validated in the discussion below of the cross-tabulation of impact speeds by severity (6.4).
- Severity by Impact Speed (6.3-6.4) –Past analyses have found the general rule of thumb that for every 10 MPH increase in speeds, the probability of the crash being fatal doubles. This was further validated in the discussion of this cross-tabulation. In the 31-35 MPH impact speed the probability is only a little over one in every 397 crashes. As impact speeds climb to the 46-55 MPH, this probability more than doubles to one in about 59 crashes. At 76-85 MPH it increases again

(exponentially) to one in about every 13 crashes, and at 91-95 it is about one in nine, which is about double again. For above 95 MPH it is about one in 8 crashes.

- Restraint Use by RS Crash Causal Drivers (6.5) The RS causal drivers are over 3 times more likely to be unrestrained than the non-RS causal drivers. Clearly RS drivers lose a good part of their concept of risk when they are willing to drive while impaired or at speeds that result in running off the road.
- Fatality Crashes by Restraint Use for Impaired Drivers (6.6) A comparison of the probability of a fatal crash indicates that a fatality is almost 18 (17.92) times more likely if the RS causal driver is not using proper restraints. Generally, one in 74 RS crashes are fatal; but without restraints, the fatal crash ratio is 1 in about 11, an increase in probability by well over six times. So the combined effect of lower restraint use and higher speeds is a devastating combination that accounts for much of the high lethality of RS crashes.
- Number of Vehicles Involved (6.7) the number of single vehicle RS crashes is over-represented by an Odds Ratio of 5.592 (proportion was close to six time more than expected). Over 9 out of 10 (93.45%) of the crashes were single vehicle. This is expected since most of the crashes involved running off the road and crashing against something in the roadside environment as opposed to another vehicle.
- Police Arrival Delay (6.8) RS crashes generally had good police response times. Arrival delays were quite favorable, with the arrival time being ten minutes or less over 57% of the time. All arrival delays over 10 minutes were significantly under-represented. There can be little doubt that this has to do with so many of them being either in or close to urban areas (77.77%, see Section 4.3). The analysis below shows how this impacts EMS arrival time, which is a comparison of those crashes that only include injuries, and thus would generally call for an EMS response.
- EMS Arrival Delay (6.9) For much the same reasons as the police arrival delays, EMS delays were significantly over-represented for Roadside (RS) crashes in the 6-10 and 11-16 minute categories. All longer delay times were under-represented up until the very high categories (91-120; 121-180; and Over 180 minutes). There were relatively few in these very long categories, which were probably caused by the single vehicle crash not be discovered late night.

• 2.7 Driver and Vehicle Demographics (7.0)

 Driver Age (7.1) – Younger (16-20 year old) drivers have a very serious problem in crash causation in general. Ages 15 through 39 are all statistically significant in being over-represented, although the Odds Ratios tend to drop off above the age of 24. Drivers tend to be under-represented above the age of 43.

- RS Crash Driver Gender (7.2) the breakdown in RS causal drivers is 62.76% male and 37.24% female. For non-RC, the percentage is 56.15 male and 43.85 female, which also gives a good estimate for male/female drivers in general. These differences in proportions certainly indicate that males are a greater cause of the RS problems, and if there are countermeasures that can be directed toward them, doing so would be much more cost-effective than those directed toward all drivers, all other things being equal.
- Causal Vehicle Type (7.3) Passenger Cars have the highest for potential crash reduction according to the Max Gain. However, Motorcycles have a much higher over-representation (2.591 Odds Ratio), indicating well over twice their expected proportion as compared to their non-RS crash proportion. None of the other classifications have significant over-representations, indicating that their proportions are about as expected. Some vehicles, notably Tractor/Semi-Trailers, Mini-vans, Pick-Ups and Sport Utility Vehicles (SUVs) are <u>under</u>-represented indicating their tendency to avoid RS crashes.
- Number of Pedestrians (7.4). Pedestrians are generally under-represented in RS crashes, indicating that most pedestrian crashes occur when pedestrians venture into the roadway as opposed to vehicles hitting them when they are walking off the road on the Roadside. This is good information for pedestrian crash reduction.
- Driver License Status (7.5) RS crashes are significantly over-represented in being caused by drivers without legitimate licenses. About 15% of the RS causal drivers did not have a legitimate driver's license. The following gives the highest over-represented categories along with the number of crashes (in parenthesis) that were attributed to the DL Status: Suspended (1,815), Revoked (893), Expired (814), and Cancelled (33).
- Driver Employment Status (7.6) RS driver unemployment rate at 22.37%, and its proportion is over 24.6% higher than expected. This factor should be watched carefully going forward specially to determine if there is not some countermeasure that could be implemented in conjunction with their unemployment payments.

• **2.8 Driver Behavior (8.0)**

- Primary Contributing Circumstances (8.1-8.2). This was introduced at the end of Section 1.0. While clearly the problems found in this study are those of RS, other driver behaviors (8.2) that are correlated with RS might provide alternatives for countermeasure development. Those behaviors that had over twice their expected PCC proportion when compared to non-RS crashes are:
 - Driving too Fast for Conditions
 - Impaired Driving (DUI)
 - Swerved to Avoid Vehicle
 - Fatigued/Asleep,

- Aggressive Operation,
- Over Correcting/Over Steering
- Swerved to Avoid Animal [most often deer]
- Over Speed Limit
- Swerved to Avoid Object.

These were the Primary Contributing Circumstances that were at least doubly over-represented even though the standard RS filter was in effect (indicating that RS was identified by attributes other than that of PCC).

- CU Officer's Opinion Impaired Driving Alcohol (8.3). We saw ample evidence for RS crashes being caused by Impaired Driving (ID) in the time of day and day of the week. The two ID attributes (C122 and C123) indicate the degree that ID was involved in RS crashes as opposed to non-RS crashes. For alcohol, the proportion of ID crashes was 3.619 times as many for RS crashes as for non-RS crashes. For drugs this multiplier was even greater at 3.894. This was sufficient to verify that the RS time over-representations reported above, were correlated almost perfectly with ID.
- CU Officer's Opinion Impaired Driving Non-alcohol Drugs (8.4). The reported non-alcohol drug cases for RS crashes is less than half of that for alcohol. The 1,464 cases are only about 4.00% of all RS crashes. However, the Odds Ratio indicates that it has an over-representation comparable to alcohol. In both cases (RS and non-RS), drug use is difficult to detect compared to alcohol, which has well-established tests for the blood-alcohol level that are relatively easy to administer. Our conclusion is that both alcohol and non-alcohol drug use are major contributors to increasing the frequency of RS crashes, and their use and severity is further compounded by trying to avoid detection by using county roads.

3.0 Roadside (RS) crashes CY2016-2020

As part of the ongoing Alabama Office of Traffic Safety (AOTS) problem identification efforts, UA-CAPS and ATI compared FY2016-2020 Roadside (RS) crashes against non-RS crashes over this same 5-year time period. The objective was to determine all significant differences between these two subsets of data. The goal was to pinpoint common factors and assess strategies that could be used to combat any major inconsistencies between these two subsets of crash data. The findings are presented to be taken into consideration when planning the large variety of countermeasures that exist to reduce the frequency and/or severity of these crashes.

3.1 RS Filter Definition

The following is the formal filter definition for Roadside (RS) crashes:

Filter Logic: Ran Off Road C015 OR ROR C017	-		\times
Logic Tree Logic Text			
 One or more of the following are true (OR) One or more of the following are true (OR) 2016-2020 Alabama Integrated Crash Data: Primary Contributing Circumstance is equal to E F One or more of the following are true (OR) 2016-2020 Alabama Integrated Crash Data: First Hammful Event is equal to E Ran Off Road R 2016-2020 Alabama Integrated Crash Data: First Hammful Event is equal to E Ran Off Road S 2016-2020 Alabama Integrated Crash Data: First Hammful Event is equal to E Ran Off Road S 2016-2020 Alabama Integrated Crash Data: First Hammful Event is equal to E Ran Off Road L 	light traight	ad	
46820 records selected by this filter.			.::

This formalizes the definition of the crashes in the RS subset of crash reports being considered here. As mentioned above, these crashes are those reported to have either a Primary Contributing Circumstance (C015) of Run-Off-the-Road and/or a First Harmful Event to be Run-Off-Road (either Right, Straight, or Left), or both.

With this filter in effect, we will now present the frequency distributions for each of the attributes that appear in the filter. These attributes are ORed together, so if any one of them showed RS, the record will be included in the RS subset. These two IMPACT displays essentially show in a nutshell those non-RS attributes that are highly correlated with RS crashes. For C015, it is the correlation with the RS defined by C017; and for C017, it is the correlation with the RS defined by C015.

Ē	le <u>D</u> ashboard <u>F</u> ilters	<u>A</u> nalysis <u>I</u>	mpact <u>L</u> oc	ations <u>T</u> ool	s <u>W</u> indow	<u>H</u> elp			- 8
	2016-2020 Alabama Integrated	d Crash Data		~	Ran Off Road C	015 OR ROR C	017	~ 💡 😨 1/	1/2016 ~ 1
)rder:	Max Gain 🗸 De	escending	∽ ⊠s	uppress Zero-\	/alued Rows	Signif	icance: Over	Representation V Thresho	ld: 2.0
:015:	Primary Contributing Circu	mstance _{ubset} Frequency	Subset Percent	Other Frequency	Other Percent	Odds Ratio	Max Gain	C015: Primary Contributing	Circumstand
	E Ran off Road	17282	41.73	0	0.00	0.000	17282.000		
	Driving too Fast for Conditi	4278	10.33	24862	4.69	2.203*	2336.223		
	DUI	3331	8.04	17246	3.25	2.473*	1984.050		
	E Swerved to Avoid Vehicle	2781	6.72	15847	2.99	2.247*	1543.315		
	E Fatigued/Asleep	2166	5.23	10844	2.05	2.557*	1319.060		
	E Over Correcting/Over St	1365	3.30	6377	1.20	2.741*	866.942		
	E Aggressive Operation	1727	4.17	11306	2.13	1.956*	843.977		
	E Swerved to Avoid Animal	1276	3.08	6520	1.23	2.506*	766.774		
	Over Speed Limit	1237	2.99	9702	1.83	1.632*	479.253		
	Defective Equipment	1084	2.62	11194	2.11	1.240*	209.724		
	E Swerved to Avoid Object	199	0.48	1242	0.23	2.051*	101.997		
	E Other - No Improper Driv	710	1.71	7852	1.48	1.158*	96.742		
	E Distracted by Use of Ele	530	1.28	6182	1.17	1.098	47.172		
	E Roadway/Sign/Signal D	66	0.16	425	0.08	1.988*	32.807		
	E Swerved to Avoid Non	36	0.09	182	0.03	2.533*	21.785		
	E Crossed Median	44	0.11	416	0.08	1.354	11.509		
	E Distracted by Insect/Re	40	0.10	402	0.08	1.274	8.603		
	E Distracted by Fallen Obj	170	0.41	2278	0.43	0.956	-7.917		
	E Distracted by Use of Oth	140	0.34	2440	0.46	0.735*	-50.569		
	E Distracted by Passenger	157	0.38	2846	0.54	0.706*	-65.279		
	Vision Obstructed	182	0.44	3533	0.67	0.660*	-93.935		
	Cargo Fell or Load Shift	20	0.05	2471	0.47	0.104*	-172.991		
	Traveling Wrong Way/Wr	51	0.12	3246	0.61	0.201*	-202.520		
	E Ran Stop Sign	234	0.57	7064	1.33	0.424*	-317.714		
	Improper Passing	45	0.11	6525	1.23	0.088*	-464.617		
	E Other Distraction Inside t	722	1.74	16279	3.07	0.568*	-549.426		
	E Other Improper Action	342	0.83	12203	2.30	0.359*	-611.081		
	E Crossed Centerline	101	0.24	9853	1.86	0.131*	-668.541		
	E Other Distraction Outsid	207	0.50	12838	2.42	0.206*	-795.676		
	Made Improper Turn	251	0.61	14536	2.74	0.221*	-884.293		
	Improper Backing	38	0.09	19503	3.68	0.025*	-1485.227		
	E Ran Traffic Signal	29	0.07	21440	4.04	0.017*	-1645.511		
	Improper Lane Change/Use	103	0.25	42067	7.93	0.031*	-3182.525		
	Unseen Object/Person/V	172	0.42	48008	9.05	0.046*	-3577.530		
	Misjudge Stopping Distance	161	0.39	67063	12.65	0.031*	-5076.767		
	Followed too Close	137	0.33	105462	19.89	0.017*	-8099.813	Sort by Sum of Max Gain	

3.1.1 C015 Primary Contributing Circumstances with RS Filter in Effect

Items with less than 20 occurrences have been omitted from the above.

3.1.2 C017 First Harmful Event

<u>F</u> il	le <u>D</u> ashboard <u>F</u> ilters <u>A</u> nalysis 2016-2020 Alabama Integrated Crash Data	Impact Lo	ocations ↓			elp DR ROR C01	17	_ ₽ ~ 💡 🔞 1/ 1/2016 ~ 1
rder:	Max Gain V Descending	~ 🗹	Suppress Z	ero-Valued F	lows	Signific	ance: Over	Representation V Threshold: 2.0
017:	First Harmful Event	Subset Frequency	Subset Percent	Other Frequency	Other Percent	Odds	Max Gain	C017: First Harmful Event
	E Ran Off Road Right	23157	49.66	0	0.00	0.000	23157.000	
	E Ran Off Road Left	12899	27.66	0	0.00	0.000	12899.000	
	E Ran Off Road Straight	2351	5.04	0	0.00	0.000	2351.000	
	Collision with Ditch	1542	3.31	17128	2.54	1.301*	357.083	
	Collision with Utility Pole	676	1.45	5475	0.81	1.785*	297.239	
	Collision with Mailbox	453	0.97	3409	0.51	1.921*	217.165	
	Collision with Tree	1197	2.57	14329	2.13	1.208*	205.718	
	Overtum/Rollover	609	1.31	6834	1.01	1.288*	136.223	
	Collision with Culvert Headwall	287	0.62	2734	0.41	1.517*	97.862	
	E Collision with Curb/Island/Raised Median	291	0.62	3272	0.49	1.286*	64.643	
	Collision with Sign Post	327	0.70	4024	0.60	1.175*	48.619	
	Collision with Fence	258	0.55	3142	0.47	1.187*	40.636	
	E Collision with Embankment	283	0.61	3680	0.55	1.112	28.417	
	E Collision with Guardrail End	123	0.26	1381	0.20	1.287*	27.462	
	Collision with Light Pole (Non-Breakaway)	62	0.13	672	0.10	1.334	15.511	
	E Collision with Other Post/Pole/Support	88	0.19	1141	0.17	1.115	9.066	
	E Collision with Cable Barrier	177	0.38	2449	0.36	1.045	7.578	
	Collision with Traffic Signal Pole	24	0.05	250	0.04	1.388	6.705	
	Collision with Light Pole (Breakaway)	46	0.10	594	0.09	1.119	4.907	
	E Collision with Other Traffic Barrier	20	0.04	264	0.04	1.095	1.736	
	Collision with Bridge Abutment/Rail	112	0.24	1755	0.26	0.922	-9.411	
	Collision with Other Fixed Object	330	0.71	5002	0.74	0.954	-16.039	
	E Crossed Median	21	0.05	645	0.10	0.471*	-23.621	
	E Collision with Guardrail Face	249	0.53	4488	0.67	0.802*	-61.480	
	E Collision with Concrete Barrier	174	0.37	4857	0.72	0.518*	-162.008	
	E Collision with Non-Motorist: Pedestrian	28	0.06	2951	0.44	0.137*	-176.150	
	E Crossed Centerline	70	0.15	5059	0.75	0.200*	-279.982	
	E Collision with Other Non-Fixed Object	59	0.13	5388	0.80	0.158*	-313.742	
	E Evasive Action (Swerve/Brake)	97	0.21	6159	0.91	0.228*	-329.080	
	Collision with Parked Motor Vehicle	340	0.73	36189	5.37	0.136*	-2163.559	
	Collision with Vehicle in Traffic	285	0.61	530839	78.75	0.008*	-36438.4	Sort by Sum of Max Gain
	čunne 50) Alabama In 017: First Ha				Dis
	Collision with Utility Pole		Collision with Island/Raised Median	wit	llision h Light Pole	E Collisi Other T Barr	raffic	E Collision with Collision with Concrete Barrier Parked Motor Vehicle

As with C015, items with less than 20 occurrences have been omitted from the above.

3.2 Overall Crashes by Year 2016-2020 Data

Before analyzing the RS subset, it is good to get a feel for the overall difference in the crash frequencies over the past years. The following table gives a comparison of total crashes over CY2016-2020 by severity.

CARE 10.2.1.3 - [Crosstal	b Results - 2016-20	20 Alabama Integra	ated Crash Data - F	ilter = Ran Off Road	1 C015 OR ROR C0	. – 🗆	\times
🚦 <u>F</u> ile <u>D</u> ashboard <u>F</u> i	ilters <u>A</u> nalysis	<u>C</u> rosstab <u>L</u> ocat	tions <u>T</u> ools <u>V</u>	<u>V</u> indow <u>H</u> elp		-	8,
2016-2020 Alabama Inte	egrated Crash Data	~	Ran Off I	Road C015 OR ROR (C017	~ 9	2
Suppress Zero Values: None	e v	Select Cells:	• % 💡		Column: Year ; F	Row: Crash Severity	(<mark>(</mark>
	2016	2017	2018	2019	2020	TOTAL	
Fatal Injury	159	140	126	102	104	631	1
r atar njury	1.72%	1.43%	1.25%	1.13%	1.21%	1.35%	
Suspected Serious Injury	696	592	570	490	462	2810	1
Suspected Serious injury	7.51%	6.04%	5.64%	5.43%	5.37%	6.00%	1
Currented Miner Inium	1284	1275	1341	1202	1130	6232	1
Suspected Minor Injury	13.85%	13.00%	13.26%	13.32%	13.13%	13.31%	1
D 11.1.1	910	939	946	940	844	4579	1
Possible Injury	9.82%	9.57%	9.35%	10.42%	9.81%	9.78%	1
	5724	6171	6424	5653	5477	29449	1
Property Damage Only	61.75%	62.91%	63.52%	62.64%	63.65%	62.90%	1
	496	692	706	637	588	3119	1
Unknown	5.35%	7.05%	6.98%	7.06%	6.83%	6.66%	
TOTAL	9269	9809	10113	9024	8605	46820	1
TOTAL	19.80%	20.95%	21.60%	19.27%	18.38%	100.00%	

RS Crashes by Severity for Calendar Years 2016-2020

We conclude from considering the percentage numbers at the bottom of the table that 2018 was significantly higher in total crashes than 2016 and 2017. However, there was clearly a reduction in crashes in 2020 due to the COVid-19 restrictions. Fatal and Suspected Serious Injury crashes had a dramatic increase in 2016, but there was a regression to the mean for these categories in 2017 through 2020.

Considerable study has been performed in an attempt to identify the reason for the 2016 outlier in fatal crashes. The conclusions drawn pointed to increased speed and ID, and a high correlation between ID crashes and those not properly restrained. Similar things are being found for RS causal drivers. The increase in fatal crashes due to speed will be considered below (3.3, 6.2-6.4).

3.3 Overall Severity Comparisons

The following presents a comparison of the severities of RS crashes over the five-year period (2016-2020) against non-RS crashes. The *Subset Frequency* and *Percent* are for RS crashes, while the *Other Frequency* and *Percent* are for non-RS crashes. Comparisons must be against the percentage proportions to determine if there is a trend direction being set in increased or decreased severity for these crashes.

It is clear that RS crashes are generally more severe than their non-RS counterparts. All four of the injury values are over-represented, and the two top most severe have at least twice the proportion of the non-RS crashes. For fatal crashes the Odds Ratio multiplier is well over double (2.561). In the other injury severities, there is still a very significant increase in both the Suspected Minor Injury and the Possible Injury. The Suspected Serious Injury difference tends to confirm the increase in the fatal crashes, since quite often the characteristics of Serious Injury crashes are not at that different from those crashes being fatal.

The following sections (4.0-8.0) provide the IMPACT displays for the various attributes that could have an influence on countermeasure development. Unless otherwise indicated in the "Order" box, the outputs will be in highest Max Gain first. The Max Gain is a term that CARE users have assigned to indicate the number of crashes that would be reduced if the respective proportion value was not at all over-represented (had an Odds Ratio of 1.000). An over-represented value of an attribute is a situation found where that attribute has a greater share of RS crashes than would be expected if it were the same as that attribute in non-RS crashes. That is, the non-RS crashes are serving as a control to which the RS crashes are being compared. In this way anything different about RS crashes surfaces and can be subjected to further analyses. The analytical technique employed to generate most of the displays below is called Information Mining Performance Analysis Control Technique (IMPACT). For a detailed description of the meaning of each element of the IMPACT outputs, see:

http://www.caps.ua.edu/software/care/

4.0 Geographic and Harmful Event Factors

4.1 County

					-					OR ROR C017 vs. N D
Eil	e <u>D</u> ashboard 2016-2020 Alabama	<u>F</u> ilte				tions <u>T</u> o		low <u>H</u> elp ad C015 OR		
		Integr	rated Crash t	Jata		~	Ran Off Ro			
	Max Gain	~	Descendin	g	⊻ □ Su	ppress Zero	-Value Sign	ificance: C	ver F	Representation V Threshold: 2.0
001:	County	F	Subset Frequency	Subset Percent	Other Frequency	Other Percent	Odds	Max Gain	^	C001: County C002: City
	Etowah		1772	3.78	13983	1.94	1.947*	861.949		C003: Year
	St Clair		1097	2.34	9219	1.28	1.828*	497.003		C004: Month
	Clarke		557	1.19	1701	0.24	5.031*	446.294		C005: Day of Month C006: Day of the Week
	Jackson		665	1.42	4825	0.67	2.118*	350.976		C007: Week of the Year
	Chambers		574	1.23	3782	0.53	2.332*	327.857		C008: Time of Day
	Chilton		611	1.30	4696	0.65	1.999*	305.372		C010: Rural or Urban
	Randolph		366	0.78	1294	0.18	4.346*	281.783		C011: Highway Classifications C012: Controlled Access
	Talladega		856	1.83	9292	1.29	1.415*	251.252		C013: E Highway Side
	Tallapoosa		429	0.92	3050	0.42	2.161*	230.498		C015: Primary Contributing Circumstan
	Dekalb		528	1.13	4766	0.66	1.702*	217.816		C016: Primary Contributing Unit Number
	Marshall		961	2.05	12077	1.68	1.223*	174.997		C017: First Harmful Event C018: Location First Harmful Event Rel
	Blount		447	0.95	4223	0.59	1.626*	172.156		C019: E Most Harmful Event
	Dale		432	0.92	4067	0.57	1.632*	167.309		C020: E Distracted Driving Opinion
	Elmore		748	1.60	9101	1.27	1.263*	155.683		C021: Distance to Fixed Object
	Morgan		1165	2.49	15601	2.17	1.147*	149.646		C022: E Type of Roadway Junction/Feat C023: E Manner of Crash
	Shelby		2058	4.40	29841	4.15	1.060*	115.869		C024: School Bus Related
	Macon		335	0.72	3369	0.47	1.528*	115.737		C025: Crash Severity
	Marion		256	0.55	2281	0.32	1.724*	107.546		C026: Intersection Related
	Bullock		157	0.34	814	0.11	2.964*	104.023		C027: At Intersection
	Walker		575	1.23	7319	1.02	1.207*	98.660		C028: Mileposted Route C029: National Highway System
	Monroe		189	0.40	1542	0.21	1.883*	88.643		C030: Functional Class
	Clay		148	0.32	916	0.13	2.483*	88.384		C031: Lighting Conditions
	Covington		277	0.59	3018	0.42	1.410*	80.581		C032: Weather
	Henry		162	0.35	1292	0.18	1.927*	77.913	~	Sort by Sum of Max Gain
	i 🗇 🖉									
					2016-2020) Alabama In	tegrated Cra	ash Data		
						C001: C	County			
	30									
	20									
ency					_					
Frequenc										
LL.	10									
										11.1
	- la-		De a De	.	1		-			
	0	1007	100000	14	alker	Per Propt	in line of	Butler		Cullman
				V	aikei	С		Dutier		Cuiman

The above has been arranged in highest Max Gain order to indicate the counties that have the highest potential for gain by reducing their over-representations. Etowah, St. Clair, Clarke, Jackson, Chambers and Chilton have the highest potentials for RS reductions, with Max Gains over 300 crashes each. The display above contains all of the counties with Odds Ratios greater than 2.000 (red backgrounds).

At the other end of the spectrum, the counties with large cities (e.g., Tuscaloosa, Jefferson, Lee, Houston, Montgomery, and Baldwin) were the most under-represented counties, although some of their numbers of RS crashes are still very large.

4.2 Cities Over-represented by Highest Max Gains (Including Rural Areas)

For comparison purposes, the rural areas of counties are considered to be "virtual cities" in that crashes that occur there are listed as "Rural County Crashes" so that these crashes can be effectively accounted for and compared. Generally, these rural areas are adjacent to (or contain) significant urban areas. Contrasted with this finding, there was significant under-representation for Roadside (RS) crashes in the largest cities themselves (e.g., Birmingham, Tuscaloosa, Mobile, Dothan, Montgomery, and Auburn, etc.). This can be attributed to a number of possible factors in urban areas:

- Roadways have less roadside areas that reporting officers could site at the crash location;
- Larger police presence in the metropolitan areas; and
- Lower speeds in urban areas resulting in a lower severity of crashes, which may be less apt to be reported as caused by the Roadside obstacles. Urban crashes contain many described as fender-benders or low-speed rear-end bumper crashes.

However, these findings were just for the largest cities. Urban areas in general were not underrepresented, as will be shown below.

The output display below is a list of what are considered to be the most critical cities and county rural areas (virtual cities) because of their high Max Gains, which indicate the potential for crash reduction. The criterion for this list was a Max Gain of 100 or more crashes. The red back-ground indicates those (virtual) city areas that had over twice their expected proportion of RS crashes (Odds Ratio).

This display is in Max Gain ordering to put those cities that have the highest potential for RS crash reduction at the top.

🖡 CA	RE 10.2.1.3 - [IMPAC	T Results - 201	6-2020 Alab	ama Integ	rated Crash	Data - Ran	Off Road C0	15 OR ROR C017 vs. N —	×
Eil		ilters <u>A</u> naly		ct <u>L</u> oca	tions <u>T</u> o	_			, s
<u> </u>	2016-2020 Alabama In	tegrated Crash	Data	`	×	Ran Off Ro	ad C015 OR F	ROR C017 ~ 💡 🏆	1
Order:	Max Gain	 ✓ Descendir 	ng 🔻	Sur	ppress Zero	-Value Sign	ificance: Ov	er Representation V Threshold: 2.0	-
C002:	City	Subset Frequency	Subset Percent F	Other Frequency	Other Percent	Odds Ratio	Max Gain	C001: County C002: City	^
	Rural Jefferson	2167	4.63	16600	2.31	2.006*	1086.487	C003: Year	
	Gadsden	750	1.60	7803	1.08	1.477*	242.094	C004: Month	
	Rural Clarke	249	0.53	279	0.04	13.711*	230.840	C005: Day of Month C006: Day of the Week	
	Scottsboro	345	0.74	2371	0.33	2.235*	190.669	C007: Week of the Year	
	Rural Etowah	322	0.69	2191	0.30	2.258*	179.385	C008: Time of Day	
	Prichard	425	0.91	3815	0.53	1.711*	176.677	C010: Rural or Urban	
	Rural Randolph	208	0.44	557	0.08	5.737*	171.744	C011: Highway Classifications	
	Rural Shelby	576	1.23	6473	0.90	1.367*	154.665	C012: Controlled Access C013: E Highway Side	
	Lincoln	221	0.47	1134	0.16	2.994*	147.187	C013: E Highway Side C015: Primary Contributing Circumstar	n
	Lanett	218	0.47	1114	0.15	3.006*	145.488	C016: Primary Contributing Unit Numb	
	Gardendale	227	0.48	1270	0.18	2.746*	144.334	C017: First Harmful Event	
	Adamsville	183	0.39	642	0.09	4.379*	141.211	C018: Location First Harmful Event Rel	t
	Odenville	171	0.37	510	0.07	5.151*	137.804	C019: E Most Harmful Event	
	Clanton	237	0.51	1571	0.22	2.318*	134.742	C020: E Distracted Driving Opinion C021: Distance to Fixed Object	
	Ashville	155	0.33	439	0.06	5.424*	126.425	C022: E Type of Roadway Junction/Fea	ıtı
	Glencoe	155	0.32	423	0.06	5.521*	124.466	C023: E Manner of Crash	
			0.32			1.464*		C024: School Bus Related	
	Albertville	383		4018	0.56		121.464	C025: Crash Severity	
	Talladega	218	0.47	1534	0.21	2.183*	118.150	C026: Intersection Related	
	Tallassee	161	0.34	753	0.10	3.285*	111.986	C027: At Intersection C028: Mileposted Route	
	Rural Chilton	283	0.60	2648	0.37	1.642*	110.639	C029: National Highway System	
	Calera	284	0.61	2740	0.38	1.592*	105.650	C030: Functional Class	
	Jackson	140	0.30	547	0.08	3.932*	104.395	C031: Lighting Conditions	
	Hartselle	223	0.48	1843	0.26	1.859*	103.037	C032: Weather	
	Rural Chambers	155	0.33	799	0.11	2.980*	102.992	C033: Locale	, v
	Rural Elmore	288	0.62	2857	0.40	1.549*	102.035	Sort by Sum of Max Gain	
0	i 🗇 🖉								
				2016-2020	Alabama In	itegrated Cra	ish Data		
					C002:				
	15								
>	10								
en C									
Frequency	_								
L L	5								
	0 - Minelante	Lott Law to		<u> </u>				Neath Ditte	
				Cotton				North Bibb	
						C002: City			

4.3 Rural or Urban

The result here is seen more in a comparisons of the percent columns than in the Odds Ratios and Max Gains. This is because with a huge sample sizes into the tens and hundreds of thousands, very small measured differences are calculated to be statistically significant. However, the difference (between RS and non-RS) in the Urban proportions is 0.07%, and for the Rural proportion difference, it is 0.70%. So, it is hard to conclude that the rural/urban mix is different in the RS and non-RS crashes. It will be interesting to study other similar attributes, such as Locale. The severity comparison immediately below indicates that the Rural areas crashes were *much more lethal* in their severity than were the Urban area crashes.

4.4 Severity of Crash by Rural-Urban

It is obvious in the above outputs that the proportion of RS crashes tends to be almost the same in rural and urbanized areas. It is interesting to perform a cross-tabulation over the rural and urban areas to determine to what extent their crashes might be causing more fatalities than would be expected from just a comparison of their crash frequency proportions. The following, *which is strictly for RS crashes*, gives this analysis.

<u>F</u> ile <u>D</u>	ashboard <u>F</u> ilters	<u>A</u> nalysis <u>C</u> rossta	b <u>L</u> ocations <u>1</u>	ools <u>W</u> indow	<u>H</u> elp			- 1			
2016-2020 Alabama Integrated Crash Data v Ran Off Road C015 OR ROR C017 v 🌱 🌠 1/ 1/2016											
uppress Zer	o Values: None	∽ Select	Cells: 🔳 🛛 🛞	9	Colu	umn: Crash Severit	y ; Row: Rural or Ur	ban [
	Fatal Injury	Suspected Serious Injury	Suspected Minor Injury	Possible Injury	Property Damage Only	Unknown	TOTAL				
Rural	243	893	1569	866	5898	938	10407				
Nurai	38.51%	31.78%	31.78% 25.18%		18.91% 20.03%		22.23%				
Urban	388	1917	4663	3713	23551	2181	36413				
Orban	61.49%	68.22%	74.82%	81.09%	79.97%	69.93%	77.77%				
TOTAL	631	2810	6232	4579	29449	3119	46820				
1.35%		6.00%	13.31%	9.78%	62.90%	6.66%	100.00%				

The red cells in the cross-tabulation above indicate over-representation by more than 10%. For example, while 22.23% of crashes occurred in rural areas, 38.51% of the fatal crashes occurred there. It is imperative to take into consideration crash severity when making geographical decisions regarding countermeasure implementation. Any of the geographic analyses shown in this report could be restricted to fatal crashes or some combination of fatal and severe injury crashes.

Clearly fatalities and the highest severity of injuries are over-represented in the rural areas, since all three of the most severe crashes are over-represented there. The reason for this is the higher speeds in the rural areas that result in higher impact speeds (see Section 6.2), as well as the lack of clear roadsides in the rural areas (especially of county roads).

4.5 Highway Classifications

🚦 CA	RE 10.2.1.3 - [IMPACT R	esults - 2016	-2020 Alaba	ama Integrat	ted Crash Da	ata - Ran Of	f Road C015	OR ROR C017 vs. N — 🗆 🗙
🔋 Ei	le <u>D</u> ashboard <u>F</u> ilte	ers <u>A</u> nalys	is <u>I</u> mpac	t <u>L</u> ocatio	ons <u>T</u> ools	<u>W</u> indow	<u>H</u> elp	_ @ ×
6 2	2016-2020 Alabama Integ	rated Crash D	ata	~	R	an Off Road	C015 OR ROI	R C017 - 🖓 🋐 1/
Order:	Max Gain 🗸 🗸	Descending	ı ~	Supp	ress Zero-Va	alue Signific	ance: Over	Representation V Threshold: 2.0
C011:	Highway Classifications	Subset Frequency	Subset Percent	Other Frequency	Other Percent	Odds Ratio	Max Gain	C007: Week of the Year C008: Time of Day
	County	10349	22.10	95252	13.24	1.669*	4149.748	C010: Rural or Urban
	Interstate	5798	12.38	79253	11.02	1.124*	640.005	C011: Highway Classifications
	Municipal	19457	41.56	289864	40.29	1.031*	591.884	C012: Controlled Access C013: E Highway Side
	Private Property	449	0.96	26426	3.67	0.261*	-1270.874	C015: Primary Contributing Circumstance
	State	<mark>6988</mark>	14.93	130920	18.20	0.820*	-1532.620	C016: Primary Contributing Unit Number
	Federal	3779	8.07	97678	13.58	0.594*	-2578.143	Sort by Sum of Max Gain
	60			2016-2020 A C011:	labama Inte <u>c</u> Highway Cla		Data	
Example 1	40 20 0	7						
		County	Interstat		unicipal I 1: Highway C	Private Prope Classification	-	ite Federal

Analysis of highway classifications indicates that RS crashes had their greatest over-representation on county roads (66.9% higher than expected). Interstate and Municipal roads were also over-represented but by much smaller Odds Ratios (12.4% for Interstates, and 3.1% for Municipal roads.). It is recommended that hotspot analysis be performed to identify the specific county roads that are most highly over-represented, and that some enforcement activities be conducted on the county roads in an attempt to move this traffic onto the safer (more forgiving) roadways. Law enforcement presence alone could have a major effect here, since a major problem is speed, and will be shown below (Section 6.2).

4.6 Locale

	RE 10.2.1.3 - [IMPACT R			-				OR ROR C017 vs. N	-	- x	
Eil	le <u>D</u> ashboard <u>F</u> ilte	ers <u>A</u> nalys	is <u>I</u> mpao	t <u>L</u> ocatio	ns <u>T</u> ools	<u>W</u> indow	/ <u>H</u> elp			- 8	×
6	2016-2020 Alabama Integ	rated Crash D	ata	~	R	an Off Road	C015 OR RO	R C017	~ 5	2	1/
Order:	Max Gain 🗸 🗸	Descending	ı ~	Suppr	ess Zero-Va	alue Signific	ance: Over	Representation ~	Threshold:	2.0 韋]
C033:	Locale	Subset Frequency	Subset Percent	Other Frequency	Other Percent	Odds Ratio	Max Gain	C033: Locale C034: E Police Pres	ent at Tim	, e of Crast	^
▶	Residential	17910	38.25	141767	19.71	1.941*	8682.672	C035: Police Notifica		1	
	Open Country	18580	39.68	199612	27.75	1.430*	5587.657	C036: Police Arrival E			
	Manufacturing or Indu	1129	2.41	13014	1.81	1.333*	281.945	C037: EMS Arrival De C038: Adjusted EMS	· ·	lav	
	Other	633	1.35	7624	1.06	1.276*	136.769	C039: Non-Vehicular		-	
	Playground	12	0.03	205	0.03	0.899	-1.343	C040: Agency ORI			
	School	366	0.78	9990	1.39	0.563*	-284.229	C042: Highway Patro			
	Shopping or Business	8190	17.49	347122	48.26	0.362*	-14403.4	Sort by Sum of Max (
0) 🗞 🖉										
				2016-2020 AI	abama Intec	arated Crash	Data				
					C033: Loc						
	60										
	_중 40 🛛										
	A0 40										
	20										
	0					//					
	-	esidential (Open Country	Manufacturir or Industria		er Pla	yground	School Shopping or Business			
					C033: L	ocale					

Residential and Open Country roadways show a higher level of over-representation as compared to the more urbanized roadways. This might be more useful than a flat rural/urban specification, which we found above to be not as definitive. There are considerable "Open Country" areas within the formal city limits of most cities, and this seems to be where a large number of the RS crashes are occurring.

¢?	2016-2020 Alabama Integrate	ed Crash Data		\sim	Ran Off Road	1 C015 OR R	OR C017	✓ ♥ 〒 1/ 1/2016 ·
Order:	Subset Frequency 🗸 D	escending	~ ~	Suppress Ze	ro-Valued Rows	Signifi	cance: Over	Representation V Threshold: 2.0 🚖
C019:	E Most Harmful Event	Subset Frequency	Subset Percent	Other Frequency	Other Percent	Odds Ratio	Max Gain	C019: E Most Harmful Event
•	Overtum/Rollover	2958	18.20	19879	11.35	1.603*	1112.424	
	Collision with Tree	2825	17.38	21463	12.26	1.418*	832.364	
	Collision with Ditch	2144	13.19	15176	8.67	1.522*	735.053	
	Collision with Parked Mot	1428	8.78	35078	20.03	0.438*	-1828.659	
	Collision with Utility Pole	1351	8.31	9012	5.15	1.615*	514.321	
	Collision with Other Fixed	879	5.41	6432	3.67	1.472*	281.850	
	Collision with Fence	517	3.18	3474	1.98	1.603*	194.472	
	Collision with Culvert Hea	496	3.05	2708	1.55	1.973*	244.588	
	Collision with Embankment	450	2.77	3263	1.86	1.485*	147.061	
	Collision with Mailbox	378	2.33	2801	1.60	1.454*	117.954	
	Collision with Guardrail Fa	355	2.18	5091	2.91	0.751*	-117.651	
	Collision with Sign Post	318	1.96	3333	1.90	1.028	8.563	
	Collision with Vehicle in (291	1.79	16539	9.45	0.190*	-1244.489	
	Collision with Concrete B	268	1.65	5814	3.32	0.497*	-271.775	
	Collision with Curb/Island	252	1.55	2579	1.47	1.052	12.564	
	Collision with Non-Motoris	217	1.33	3176	1.81	0.736*	-77.861	
	Collision with Cable Barrier	202	1.24	3098	1.77	0.702*	-85.620	
	Collision with Guardrail End	186	1.14	1547	0.88	1.295*	42.376	
	Collision with Light Pole (146	0.90	1080	0.62	1.456*	45.732	
	Collision with Bridge Abut	144	0.89	1926	1.10	0.805*	-34.811	
	Collision with Other Post/	135	0.83	1398	0.80	1.040	5.209	
	Collision with Light Pole (116	0.71	925	0.53	1.351*	30.123	
	Fire/Explosion	100	0.62	1925	1.10	0.560*	-78.718	
	Collision with Other Non	100	0.62	5942	3.39	0.181*	-451.658	Sort by Sum of Max Gain
0	1 🞯 🖉							
				2016-2020 Ala	ibama Integrated	d Crash Data	1	
				C019:	E Most Harmful	Event		
	30							
	≩ 20	-						
Ĺ			The second		_			
	0	Collision with	Utility Pole	Collision with	h Mailbox	Collision		Collision with
				~		Curb/Island/Rai	ised Median	Bridge Abutment/Rail
				C	019: E Most Ha	rmtul Event		

4.7 Most Harmful Event (ordered by frequency)

These displays are intended to give safety engineers a knowledge of what is being hit most often on the roadside so that effective obstacle clearance may be facilitated. In ultimate practice hotspot analyses can be conducted to find those roads most in need of roadside improvement. These analyses can then produce the particular First Harmful Events and Most Harmful Events to guide the roadside clearance efforts.

4.8 Most Harmful Fatal Event; C019 and Fatal

The above Most Harmful Event analysis was repeated below for RS fatality crashes. In general, trees are the most often causing death. The second most lethal crash type is Overturn/Rollover. After that, the number of fatal crashes caused drops off quickly. However, the frequencies of two others stand out: Collision with Utility Pole (37), and Collision with Ditch (31).

🖡 CA	ARE 10.2.1.3 - [IMPACT Results - 2016-20)20 Alabam	na Integrat	ted Crash I	Data - Ran	Off Road	C015 OR F	ROR C01 — 🗆 🗙
E E	ile <u>D</u> ashboard <u>F</u> ilters <u>A</u> nalysis	<u>I</u> mpact	<u>L</u> ocatio	ons <u>T</u> oo	ls <u>W</u> indo	ow <u>H</u> e	lp	_ @ ×
6 °	2016-2020 Alabama Integrated Crash Data	I	~		Ran Off Roa	d C015 O	R ROR C01	17 And Fatal Crashes 🛛 🗸 🕕 🍸
Order	: Max Gain V Descending	~	Supp	ress Zer S	ignificance:	Over R	epresentatio	on 🗸 Threshold: 2.0 🖨
C019	E Most Harmful Event	Subset equency	Subset Percent	Other equency	Other Percent	Odds Ratio	Max Gain	C019: E Most Harmful Event
•	Collision with Tree	202	38.04	24086	14.37	2.648*	125.711	
	Overtum/Rollover	136	25.61	22701	13.54	1.891*	64.098	
	Collision with Culvert Headwall	20	3.77	3184	1.90	1.983*	9.915	
	Immersion	10	1.88	247	0.15	12.782	9.218	
	Fire/Explosion	14	2.64	2011	1.20	2.198	7.630	
	Collision with Utility Pole	37	6.97	10326	6.16	1.131	4.294	
	Collision with Bridge Support/Column	5	0.94	275	0.16	5.740	4.129	
	Collision with Embankment	15	2.82	3698	2.21	1.281	3.287	
	Fell/Jumped from Motor Vehicle	5	0.94	544	0.32	2.902	3.277	
	Collision with Light Pole (Non-Breakaway)	5	0.94	1221	0.73	1.293	1.133	
	Collision with Guardrail End	6	1.13	1727	1.03	1.097	0.530	
	Collision with Non-Motorist: Pedestrian	7	1.32	3386	2.02	0.653	-3.725	
	Collision with Concrete Barrier	9	1.69	6073	3.62	0.468	-10.235	
	Collision with Other Fixed Object	11	2.07	7300	4.35	0.476	-12.122	
	Collision with Other Non-Fixed Object	5	0.94	6037	3.60	0.261	-14.121	
	Collision with Ditch	31	5.84	17289	10.31	0.566*	-23.761	
	Collision with Parked Motor Vehicle	13	2.45	36493	21.77	0.112	-102.587	Sort by Sum of Max Gain
00) 🚳 🖉							
		2016-2		ima Integra Aost Harmf	ted Crash E)ata		
	10		C013. E1	nost naimi	ur Event			
	ک ⁴⁰							
	20 20 2							
	e de la companya de la			_			_	
	Fi	re/Explosion			lision with Lig (Non-Breakaw			ollision with Other Non-Fixed Object
			C019	F Most H	armful Ever	it		

🖡 CA	RE 10.2.1.3 - [IMPACT Results -	2016-2020	Alabama	Integrated	Crash Dat	ta - Ran Of	ff Road CO	015 OR ROR C017 AN — 🗆 🗙
🔋 Ei	ile <u>D</u> ashboard <u>F</u> ilters <u>A</u>	nalysis	<u>I</u> mpact	<u>L</u> ocations	<u>T</u> ools	<u>W</u> indov	v <u>H</u> elp	_ & ×
6 2	2016-2020 Alabama Integrated Cra	ash Data		~	Ra	n Off Road	C015 OR F	ROR C017 🗸 💡 😨
Order	Max Gain V Desce	ending	~ [Suppres	s Zero-Val	Significa	nce: Over	Representation V Threshold: 2.0
C407:	CU Roadway Curvature and G	radeubset requency	Subset Percent	Other requency	Other Percent	Odds Ratio	Max Gain	C407: CU Roadway Curvature and Grade
•	E Curve Left and Level	4226	9.03	13616	1.89	4.767*	3339.4	1
	E Curve Left and Down Grade	2722	5.81	9921	1.38	4.214*	2076.0	
	E Curve Right and Level	2595	5.54	16713	2.32	2.385*	1506.8	
	E Curve Right and Down Grade	1806	3.86	10126	1.41	2.739*	1146.7	
	E Curve Left and Up Grade	1450	3.10	5906	0.82	3.771*	1065.4	
	E Curve Right and Up Grade	1085	2.32	7164	1.00	2.326*	618.560	
	Straight with Down Grade	4049	8.65	58679	8.16	1.060*	228.475	
	E Curve Left at Hillcrest	148	0.32	560	0.08	4.059*	111.539	
	E Curve Right at Hillcrest	91	0.19	516	0.07	2.709*	57.404	
	E Sag (Bottom)	19	0.04	294	0.04	0.993	-0.142	
	Straight at Hillcrest	219	0.47	4528	0.63	0.743*	-75.813	
	Straight with Up Grade	2728	5.83	46966	6.53	0.892*	-329.904	
	CU is Unknown	843	1.80	28004	3.89	0.462*	-980.309	
	Not Applicable	577	1.23	26651	3.71	0.333*	-1158	
	Straight and Level	24262	51.82	489459	68.07	0.761*	-7606	Sort by Sum of Max Gain
00) 🗇 🖉							
			2016-	2020 Alaba	ma Integra	ted Crash	Data	
			C407	7: CU Roady	vay Curva	ture and G	rade	
	80							
	e0 60							
	40							
	20							
	0	E Com	1 - 11			F 0	(D-H-	
		E Curve		Up Grade 407: CU Ro		-) (Bottom) Straight and Level
			C	407: CU R0	adway Cu	rvature and	Grade	

4.9 CU Roadway Curvature and Grade

It is not surprising that RS crashes are dramatically over-represented on all types of curves. Left curves either level or with a downgrade are generally more of a problem than right curves with the same grades. Level and down grades are more of a problem than up-grades.

5.0 Time Factors

5.1 Year

1	CARE 1	10.2.1.3 - [IMPA	CT Results - 20)16-2020 A	labama Int	egrated Cr	ash Data - I	Ran Off Roa	ad C015 OR ROR C01 —		×
B	<u>F</u> ile	<u>D</u> ashboard	<u>F</u> ilters <u>A</u> na	lysis <u>I</u> m	pact <u>L</u> o	cations	<u>T</u> ools <u>W</u>	<u>/</u> indow <u></u>	<u>H</u> elp	-	∂ ×
¢?	201	6-2020 Alabama	Integrated Cras	n Data		\sim	Ran Off	Road C015	OR ROR C017	~ (1
Ord	ler: Ma	ix Gain	✓ Descender	ling	<u>~</u> □:	Suppress Z	er Significa	nce: Over	Representation V Thresho	ld: 2.0	÷
C0 ()3: Yea	ar Nde	Subset requency	Subset Percent	Other requency	Other Percent	Odds	Max Gain	C001: County C002: City		^
	20	16	9269	19.80	147097	20.45	0.968*	-304.462	C003: Year		
	201	17	9809	20.95	147391	20.49	1.023*	216.404	C004: Month		
	201	18	10113	21.60	149963	20.85	1.036*	353.011	C005: Day of Month C006: Day of the Week		
	201	19	9024	19.27	149934	20.84	0.925*	-734.101	C007: Week of the Year		~
	202	20	8605	18.38	125008	17.38	1.058*	469.149	Sort by Sum of Max Gain		
		s 🖉									
				:	2016-2020		tegrated Cra	ash Data			
						C003: `	Year				
		30									
										_	
	5	20									
	Frequency										
	Frec	10									
		0									
			2016		2017	20		2019	2020		
						C003	: Year				

The chart above is useful for tracking the relative changes by directly comparing the number of RS crashes to the non-RS crashes by year. All of the comparisons were significantly different from the non-RS crashes, but the results are quite mixed. Years 2016 and 2019 had a significantly smaller proportion than the non-RS. The other three, 2017, 2018 and 2020 had more than expected. There is no apparent trend in the RS proportion.

5.2 Month

🔋 CA	🔋 CARE 10.2.1.3 - [IMPACT Results - 2016-2020 Alabama Integrated Crash Data - Ran Off Road C015 OR ROR C017 vs – 🛛 🗙									
🖡 E	ile <u>D</u> ashboard <u>F</u> il	ters <u>A</u> nal	ysis <u>I</u> mp	act <u>L</u> oc	ations <u>T</u> e	ools <u>W</u> in	dow <u>H</u> e	elp	_ & ×	
6 2	2016-2020 Alabama Inte	grated Crash	Data		\sim	Ran Off R	oad C015 C	R R	OR C017 - 🖓 🏆	
Order	: Max Gain 🕓	Descendi	ng	⊻ □ S	uppress Zer	o-Valı Signi	ficance: C)ver l	Representation V Threshold: 2.0 🛓	
C004	Month	Subset Frequency	Subset Percent	Other Frequency	Other Percent	Odds	Max Gain	^	C001: County C002: City	
▶	January	4014	8.57	57686	8.02	1.069*	259.642		C003: Year	
	February	3796	8.11	56636	7.87	1.030	109.979		C004: Month	
	March	4008	8.56	60752	8.44	1.014	54.099		C005: Day of Month C006: Day of the Week	
	April	3747	8.00	56742	7.89	1.015	54.080		C007: Week of the Year	
	May	3971	8.48	60423	8.40	1.010	38.511		C008: Time of Day	
	June	3913	8.36	57562	8.00	1.045*	166.713		C010: Rural or Urban	
	July	3816	8.15	56403	7.84	1.040*	145.144		C011: Highway Classifications	
	August	3966	8.47	62607	8.70	0.973	-108.629		C012: Controlled Access C013: E Highway Side	
	September	3526	7.53	59888	8.32	0.905*	-371.670		C015: Primary Contributing Circumstance	
	October	3896	8.32	65448	9.10	0.915*	-363.529		C016: Primary Contributing Unit Numbe	
	November	3749	8.01	61864	8.60	0.931*	-277.273		C017: First Harmful Event	
	December	4418	9.44	63382	8.81	1.071*	292.932	~	Sort by Sum of Max Gain	
0										
				2016-2020) Alahama Ir	ntegrated Cr	ash Data			
				2010 2020	C004: I	-				
	10									
	Annual S									
		February		April	Jun C0	e 04: Month	August		October December	

Significant over-representations by month were found in January, June, July and December. Significantly under-representations by month were found in September, October and November. The reason for these differences should be sought in the basic causes of RS crashes, which most often stem from speed and/or Impaired Driving.

5.3 Day of the Week

The above is a well-established and recognized pattern for Impaired Driving crashes, with their concentrations on the weekend periods, and it confirms what was suggested above for the monthly results. The main conclusion is that impaired driving is a major central cause for RS crashes.

5.4 Day of the Week Discussion

The chart above shows the typical non-holiday week pattern that has been experienced for Impaired Driving (ID) for decades. The days can be classified as follows:

- Weekday (Monday through Thursday) these days are under-represented in RS crashes we would surmise due to the need for many to go to work the following day.
- Friday the day before a weekend (or holiday) before a day off work. The Friday pattern is slightly under-represented in RS crashes, not because they do not occur more frequently than weekdays, but because non-RS crashes occur even more. Friday is both "work commuting day" and a "departure for recreation" time, causing increased traffic of combined commuters and vacationers (including short week-end vacations) that also resulting in a bad traffic mix. It may be only slightly denser than a typical rush hour, but it is not homogeneous and restricted to commuters as is the case during most weekday rush hours. No doubt much drug use and increased alcohol consumption is initiated on Friday afternoons.
- Saturday the "Saturday" pattern is the worse for ID (and thus RS) crashes in that it has both an early morning component (like Sunday) and a late (pre-midnight) night component (like Friday). So, it could be viewed as a combination of the typical Friday and Sunday, with one exception. It does not have the increased complexity of the Friday afternoon commuters.
- Sunday this is the last day of a holiday sequence or as given above, the weekend. Its over-representation comes strictly from those who start on Saturday night and do not complete their use of alcohol/drugs until after midnight.

A holiday "weekend," such as Thanksgiving, can be viewed as a sequence of a Friday-, Saturdays- and Sunday-pattern sequence. The Wednesday before Thanksgiving would follow the Friday pattern assuming that most are at work that Wednesday. The Thursday, Friday and Saturday would follow the Saturday pattern, and the Sunday would follow the typical Sunday pattern. Holidays that fall mid-week could also be so mapped. This is the reason that long holiday events (i.e., several days off from work) can be much more prone to RS crashes than the normal weekend. There could be a cumulative effect that could show up at any time of the day for some problem abusers. Recently the trend on the pre-Thanksgiving week has been for the holiday to start earlier and earlier in the week, so that Wednesday itself is not one of the worse crash days of the year, as it had been a decade or more ago. This if favorable in reducing the concentration of the traffic and the resultant conflicts.

While the discussion above concentrates on Impaired Driving (aka DUI), it relates to RS crashes in that, as we shall see going forward below, a large proportion of RS crashes turn out to be single vehicle ID crashes.

5.5 Time of Day

Eile Dashboard Eilters Analysis Impact Locations Tools Window Help 2016-2020 Alabama Integrated Crash Data Ran Off Road C015 OR ROR C017 Order: Natural Order Descending Subset Subset Other Odds Max C008: Time of Day Subset Percent Frequency Percent Ratio Gain C003: Year C004: Month 100 AM to 1:59 AM 1661 3.55 6125 0.85 4.167 1282.056 C006: Day of the Week C007: Week of the Year C008: Time of Day C008: Time of Day C008: Time of Day C001: Rural or Urban C006: Day of Month C006: Day of Month C006: Day of the Week C007: Week of the Year C008: Time of Day C001: Rural or Urban C010: Rural or Urban C010: Rural or Urban C011: Highway Side C011: Highway Side C012: Controlled Access C013: E Highway Side C015: Primary Contributing C014: Strama or Urban C014: Strama or Urban C015: Primary Contributing C015: Primary Contributing C016: Stramay C016: Strama	CARE 10.2.1.3 - [IMPACT Results - 2016-2020 Alabama Integrated Crash Data - Ran Off Road C015 OR ROR C017 vs – 🛛 🗙								
Code: Natural Order Descending Subset Other Percent Other Ratio Oads Gain Cools: Year 12:00 Midnight to 12:: 1785 3.81 7674 1.07 3.574* 1285.56 Cools: Year Cools: Day of Month 10:00 AM to 1:59 AM 1661 3.55 6125 0.85 4.167* 1222.369 Cool: Tweek of the Year 3:00 AM to 3:59 AM 1405 3.00 4918 0.68 4.390* 1084.924 Col1: Rural or Urban 6:00 AM to 6:59 AM 1326 2.83 5798 0.81 3.514* 948.651 Col1: Firmary Contributing 7:00 AM to 7:59 AM 1205 4.50 43119 5.99 0.750* 701.299 Col1: Location First Harmful Event Col2: E Most Harm	🖥 Eile Dashboard Eilters Analysis Impact Locations Tools Window Help 🗕 🗗 🗙								
Order: Natural Order Descending Suppress Zero-Valu Significance: Over Representation Thresholds C008: Time of Day Subset Subset Other Percent Other Requency Other Percent Odds Ratio Max Gain C003: Year 1:00 AM to 1:59 AM 1661 3.55 6125 0.85 4.167* 1262.369 C006: Day of Month 2:00 AM to 2:59 AM 1591 3.40 5529 0.77 4.421* 1231.158 C008: Time of Day 3:00 AM to 3:59 AM 1405 3.00 4918 0.68 4.390* 1084.924 C010: Rural or Urban 5:00 AM to 5:59 AM 1326 2.83 5798 0.81 3.514* 948.651 C012: Controlled Access 6:00 AM to 5:59 AM 1984 4.24 18458 2.57 1.652* 782.705 C013: First Harmful Event 9:00 AM to 8:59 AM 1773 3.79 31355 4.36 0.869* 267.666 9:00 AM to 10:59 AM 1682 3.59 32156 4.47 0.804* 410.798 <td>/ 😌 🦉</td>	/ 😌 🦉								
C008: Time of Day Subset Frequency Subset Percent Other Frequency Other Percent Other Ratio Gain C003: Year 12:00 Midnight to 12: 1785 3.81 7674 1.07 3.574* 1285.556 1:00 AM to 1:59 AM 1661 3.55 6125 0.85 4.167* 1262.699 2:00 AM to 2:59 AM 1591 3.40 5529 0.77 4.421* 1231.158 3:00 AM to 3:59 AM 1405 3.00 4918 0.68 4.390* 1084.924 4:00 AM to 4:59 AM 1326 2.83 5798 0.81 3.514* 948.651 5:00 AM to 5:59 AM 1710 3.65 10740 1.49 2.446* 1011.012 6:00 AM to 6:59 AM 1773 3.79 31355 4.36 0.869* 267.666 9:00 AM to 9:59 AM 1602 3.42 27667 3.85 0.890* -198.642 10:00 AM to 10:59 AM 1692 3.61 39818 5.53 0.653* 499.411 12:00 Noon to									
Frequency Percent Frequency Percent Ratio Gain C004: Month 12:00 Midnight to 12: 1785 3.81 7674 1.07 3.574* 1285.556 C005: Day of Month 1:00 AM to 1:59 AM 1661 3.55 6125 0.85 4.167* 1262.369 C007: Week of the Year 3:00 AM to 2:59 AM 1405 3.00 4918 0.68 4.390* 1084.924 C008: Time of Day 4:00 AM to 4:59 AM 1326 2.83 5798 0.81 3.514* 948.651 C011: Highway Classification 5:00 AM to 5:59 AM 1710 3.65 10740 1.49 2.446* 1011.012 C012: Controlled Access 6:00 AM to 6:59 AM 1984 4.24 18458 2.57 1.652* 782.705 C018: Primary Contributing 7:00 AM to 7:59 AM 2105 4.50 43119 5.99 0.750* -701.299 C016: Primary Contributing 9:00 AM to 8:59 AM 1773 3.79 31355 4.36 0.869* -267.666 C017: F	old: 2.0 🚖								
1:00 AM to 1:59 AM 1661 3.55 6125 0.85 4.167* 1262.369 C006: Day of the Week 2:00 AM to 2:59 AM 1591 3.40 5529 0.77 4.421* 1231.158 C008: Time of Day 3:00 AM to 3:59 AM 1405 3.00 4918 0.68 4.390* 1084.924 C010: Rural or Urban 4:00 AM to 4:59 AM 1326 2.83 5798 0.81 3.514* 948.651 C011: Highway Classificatio 5:00 AM to 5:59 AM 1710 3.65 10740 1.49 2.446* 1011.012 C013: E Highway Side C015: Primary Contributing 7:00 AM to 5:59 AM 1984 4.24 18458 2.57 1.652* 782.705 C016: Primary Contributing 8:00 AM to 8:59 AM 1773 3.79 31355 4.36 0.869* -267.666 C017: First Harmful Event 9:00 AM to 9:59 AM 1602 3.42 27667 3.85 0.890* -198.642 C018: Location First Harmful Event 10:00 AM to 10:59 AM 1692 3.61 39818	^								
1.00 AM to 1.50 AM 1001 3.33 0123 0.03 4.107 1202.303 C007: Week of the Year 2:00 AM to 2:59 AM 1591 3.40 5529 0.77 4.421* 1231.158 3:00 AM to 3:59 AM 1405 3.00 4918 0.68 4.390* 1084.924 4:00 AM to 4:59 AM 1326 2.83 5798 0.81 3.514* 948.651 5:00 AM to 5:59 AM 1710 3.65 10740 1.49 2.446* 1011.012 6:00 AM to 6:59 AM 1984 4.24 18458 2.57 1.652* 782.705 C013: E Highway Side 7:00 AM to 7:59 AM 2105 4.50 43119 5.99 0.750* -701.299 C016: Primary Contributing 9:00 AM to 8:59 AM 1773 3.79 31355 4.36 0.869* -267.666 C017: First Harmful Event 10:00 AM to 10:59 AM 1682 3.59 32156 4.47 0.804* -410.798 C019: E Most Harmful Event 11:00 PM to 11:59 AM 1692 3.61 39818 5.53 0.653* -899.461 C021: Distracted Driving G </td <td></td>									
2:00 AM to 2:59 AM 1591 3.40 5529 0.77 4.421* 1231.158 3:00 AM to 3:59 AM 1405 3.00 4918 0.68 4.390* 1084.924 4:00 AM to 4:59 AM 1326 2.83 5798 0.81 3.514* 948.651 5:00 AM to 5:59 AM 1710 3.65 10740 1.49 2.446* 1011.012 6:00 AM to 6:59 AM 1984 4.24 18458 2.57 1.652* 782.705 7:00 AM to 7:59 AM 2105 4.50 43119 5.99 0.750* -701.299 8:00 AM to 8:59 AM 1773 3.79 31355 4.36 0.869* -267.666 9:00 AM to 10:59 AM 1682 3.59 32156 4.47 0.804* -410.798 11:00 AM to 11:59 AM 1692 3.61 39818 5.53 0.653* -899.461 12:00 Noon to 12:59 1888 4.03 48481 6.74 0.598* -1267.272 1:00 PM to 1:59 PM 1914 4.09 <td< td=""><td></td></td<>									
3:00 AM to 3:59 AM 1405 3.00 4918 0.68 4.390* 1084.924 C010: Rural or Urban 4:00 AM to 4:59 AM 1326 2.83 5798 0.81 3.514* 948.651 C010: Rural or Urban 5:00 AM to 5:59 AM 1710 3.65 10740 1.49 2.446* 1011.012 C012: Controlled Access 6:00 AM to 6:59 AM 1984 4.24 18458 2.57 1.652* 782.705 C013: E Highway Side 7:00 AM to 7:59 AM 2105 4.50 43119 5.99 0.750* -701.299 C016: Primary Contributing 8:00 AM to 8:59 AM 1773 3.79 31355 4.36 0.869* -267.666 C017: First Harmful Event 9:00 AM to 9:59 AM 1602 3.42 27667 3.85 0.890* -198.642 C019: E Most Harmful Event 10:00 AM to 11:59 AM 1682 3.59 32156 4.47 0.804* -410.798 C020: E Distracted Driving G 11:00 PM to 1:59 PM 1914 4.09 47924 6.66 0.614*									
4:00 AM to 4:59 AM 1326 2.83 5798 0.81 3.514* 948.651 C011: Highway Classification 5:00 AM to 5:59 AM 1710 3.65 10740 1.49 2.446* 1011.012 C012: Controlled Access 6:00 AM to 6:59 AM 1984 4.24 18458 2.57 1.652* 782.705 C013: E Highway Side C015: Primary Contributing 7:00 AM to 7:59 AM 2105 4.50 43119 5.99 0.750* -701.299 C016: Primary Contributing 8:00 AM to 8:59 AM 1773 3.79 31355 4.36 0.869* -267.666 C017: First Harmful Event 9:00 AM to 9:59 AM 1602 3.42 27667 3.85 0.890* -198.642 C019: E Most Harmful Event 10:00 AM to 10:59 AM 1682 3.59 32156 4.47 0.804* -410.798 C020: E Distracted Driving G 11:00 AM to 11:59 AM 1692 3.61 39818 5.53 0.653* -899.461 C021: Distance to Fixed Ob 12:00 Noon to 12:59 1888 4.03 48481 6.74 0.598* -1267.272 C023: E Manner of Crash									
Cloc Autor 5.00 Autor 1016 1016 10010 1.100 1.10 1.10 1.	ons								
6:00 AM to 6:53 AM 1984 4.24 18458 2:57 1.652 782.705 C015: Primary Contributing C016: Primary Contributing C016: Primary Contributing C016: Primary Contributing C016: Primary Contributing C016: Primary Contributing C017: First Harmful Event 9:00 AM to 8:59 AM 1773 3.79 31355 4.36 0.869* -267.666 9:00 AM to 9:59 AM 1602 3.42 27667 3.85 0.890* -198.642 10:00 AM to 10:59 AM 1682 3.59 32156 4.47 0.804* -410.798 11:00 AM to 11:59 AM 1692 3.61 39818 5.53 0.653* -899.461 C021: Distance to Fixed Ob C021: Distance to Fixed Ob C022: E Type of Roadway J 1:00 PM to 1:59 PM 1914 4.09 47924 6.66 0.614* -1205.021 2:00 PM to 2:59 PM 2268 4.84 51957 7.22 0.671* -1113.499 C022: Crash Severity									
7:00 AM to 7:59 AM 2105 4.50 43119 5.99 0.750* -701.299 C016: Primary Contributing C017: First Harmful Event 9:00 AM to 8:59 AM 1773 3.79 31355 4.36 0.869* -267.666 C017: First Harmful Event 9:00 AM to 9:59 AM 1602 3.42 27667 3.85 0.890* -198.642 10:00 AM to 10:59 AM 1682 3.59 32156 4.47 0.804* -410.798 C019: E Most Harmful Event 11:00 AM to 11:59 AM 1692 3.61 39818 5.53 0.653* -899.461 C020: E Distracted Driving 4 12:00 Noon to 12:59 1888 4.03 48481 6.74 0.598* -1267.272 C022: E Type of Roadway J 1:00 PM to 1:59 PM 1914 4.09 47924 6.66 0.614* -1205.021 C023: E Manner of Crash 2:00 PM to 2:59 PM 2268 4.84 51957 7.22 0.671* -1113.499 C024: School Bus Related C025: C crash Severity 51957 7.22 0.671* <td></td>									
8:00 AM to 8:59 AM 1773 3.79 31355 4.36 0.869* -267.666 C017: First Harmful Event 9:00 AM to 9:59 AM 1602 3.42 27667 3.85 0.890* -198.642 C017: First Harmful Event 10:00 AM to 10:59 AM 1682 3.59 32156 4.47 0.804* -410.798 C019: E Most Harmful Event 11:00 AM to 11:59 AM 1692 3.61 39818 5.53 0.653* -899.461 C020: E Distracted Driving C020: E Distracted Driving C020: E Type of Roadway J 12:00 Noon to 12:59 1888 4.03 48481 6.74 0.598* -1267.272 C022: E Type of Roadway J 1:00 PM to 1:59 PM 1914 4.09 47924 6.66 0.614* -1205.021 C023: E Manner of Crash 2:00 PM to 2:59 PM 2268 4.84 51957 7.22 0.671* -1113.499 C024: School Bus Related C025: Crash Severity C026 Cosh Severity C025 Cosh Severity									
9:00 AM to 9:59 AM 1602 3.42 27667 3.85 0.890* -198.642 C018: Location First Harmful Even C019: E Most Harmful Even C020: E Distracted Driving C 10:00 AM to 10:59 AM 1682 3.59 32156 4.47 0.804* -410.798 C019: E Most Harmful Even C020: E Distracted Driving C 11:00 AM to 11:59 AM 1692 3.61 39818 5.53 0.653* -899.461 C021: Distracted Driving C 12:00 Noon to 12:59 1888 4.03 48481 6.74 0.598* -1267.272 C022: E Type of Roadway J 1:00 PM to 1:59 PM 1914 4.09 47924 6.66 0.614* -1205.021 C023: E Manner of Crash 2:00 PM to 2:59 PM 2268 4.84 51957 7.22 0.671* -1113.499 C024: School Bus Related C026: C crash Severity 51957 7.22 0.671* -1113.499 C026: C crash Severity	OnitiNumbe								
10:00 AM to 10:59 AM 1682 3.59 32156 4.47 0.804* -410.798 C019: E Most Harmful Even C020: E Distracted Driving of C021: Distracted Driving of C022: E Type of Roadway J C022: E Type of Roadway J C021: Crash Severity	ul Event Rel t								
11:00 AM to 11:59 AM 1692 3.61 39818 5.53 0.653* -899.461 C020: E Distracted Driving G 12:00 Noon to 12:59 1888 4.03 48481 6.74 0.598* -1267.272 C020: E Distracted Driving G 1:00 PM to 1:59 PM 1914 4.09 47924 6.66 0.614* -1205.021 C023: E Manner of Crash 2:00 PM to 2:59 PM 2268 4.84 51957 7.22 0.671* -1113.499 C024: School Bus Related C025: C crash Severity C025: C crash Severity C025: C crash Severity C025: C crash Severity	nt								
12:00 Noon to 12:59 1888 4.03 48481 6.74 0.598* -1267.272 C021: Distance to Fixed Ob C022: E Type of Roadway J 1:00 PM to 1:59 PM 1914 4.09 47924 6.66 0.614* -1205.021 C023: E Manner of Crash 2:00 PM to 2:59 PM 2268 4.84 51957 7.22 0.671* -1113.499 C024: School Bus Related									
1:00 PM to 1:59 PM 1914 4.09 47924 6.66 0.614* -1205.021 C022: E type of Roadway J 2:00 PM to 2:59 PM 2268 4.84 51957 7.22 0.671* -1113.499 C024: School Bus Related C025: Crash Severity C026: Crash Severity C026: Crash Severity C026: Crash Severity									
2:00 PM to 2:59 PM 2268 4.84 51957 7.22 0.671* -1113.499 C024: School Bus Related	unction/Feati								
2.001 m to 2.001 m 2200 4.04 31307 7.22 0.071 1113.400 C025: Crash Savarity									
3:00 PM to 3:59 PM 2662 5.69 65070 9.05 0.629* -1572.928 0023. Classificeventy									
4:00 PM to 4:59 PM 2451 5.23 62972 8.75 0.598* -1647.384 C026: Intersection Related									
C027: At Intersection									
5:00 PM to 5:59 PM 2400 5.13 67396 9.37 0.547* -1986.310 C028: Mileposted Route	ato m								
6:00 PM to 6:59 PM 2300 4.91 43397 6.03 0.814* -524.392 C029: National Highway Sy	stem								
7.00 FM t0 7.35 FM 2143 4.36 23101 4.05 1.131 249.030 C031: Lighting Conditions									
8:00 PM to 8:59 PM 1999 4.27 24095 3.35 1.275* 430.834 C032: Weather									
9:00 PM to 9:59 PM 2217 4.74 19344 2.69 1.761* 958.041 C033: Locale									
10:00 PM to 10:59 PM 2090 4.46 14595 2.03 2.200* 1140.119 C034: E Police Present at T									
11:00 PM to 11:59 PM 1944 4.15 10500 1.46 2.845* 1260.632 C035: Police Notification De Unknown 228 0.49 1204 0.17 2.910* 149.640 Sort by Sum of Max Gain	eray v								
2016-2020 Alabama Integrated Crash Data - Filter = Ran Off Road C015 OR ROR C017 vs. Not Ran Off Road C015 OR ROR C	017								
C008: Time of Day									
10									
5 - 5									
4:00 AM to 4:59 AM 9:00 AM to 9:59 AM 2:00 PM to 2:59 PM 7:00 PM to 7:59 PM U	Jnknown								
C008: Time of Dav									

5.6 Discussion on Time of Day

It is no surprise to find RS crashes over-represented during the late night/early morning hours, since their other correlations with aspects of Impaired Driving (ID) is clear. The following narrative was developed with regard to a special study that was done for ID. We include it here because of it relevance to RS crashes.

The extent of these over-representations is quite amazing. The blue bars above follow the typical traffic patterns of high traffic in the morning and afternoon rush hours. ID, and thus RS crashes, are just getting started in the afternoon rush hours and they continue to grow through midnight and the early morning hours, not tapering off until about 7:00 AM. It is clear that if selective enforcement is going to have an effect on RS crashes, it would have to be conducted at the times when these crashes are most occurring. Optimal times for Friday enforcement would start immediately following any rush hour details, and would continue through at least 3:00 AM.

The *Time of Day by Day of the Week* cross-tabulation (given in the next section for RS crashes only) shows the optimal times for selective enforcement. <u>Generally</u>, the worst times in any day are given in red for that day. This works well for Saturday and Sunday mornings, but not too well for Friday night. The reason is that proportions on Saturday night, eclipsed the Friday numbers, even though they were higher than any other day except Saturday.

Notice that the total number of RS crashes is 46,820, while the total ID crashes was 28,300; thus there are over 65% more RS crashes than reported ID crashes. RS crashes could be an excellent (although clearly not perfect) proxy for ID crashes. Sometimes ID crashes will not be reported as such because of the imperfections in ID measurement, especially for drugs. This is not as much of a problem with RS since it is clear when a crash occurs on the roadside.

This is an excellent example to demonstrate how the color coding of CARE cross-tabulations can be misleading in some special cases. The red background indicates that the over-representation of the cell is greater than expected. The expected proportion for all cells in a given row is given at the extreme right in the total row percentage for that row. If there were absolutely no over-representations across the columns, then all of the proportions for those cells would be identical to the one for the total. Notice for example, the 7 AM to 7:59 AM row has a total percentage value of 4.50%. Those that are under this value have a neutral (white) background. Those that are higher, but not more than 10% of the proportion are yellow; and those above 10% of the proportion are red.
			-	h Data - Filter = Rar		(NOK COT/)		- 0
<u>F</u> ile <u>D</u> ashbo	ard <u>F</u> ilters	<u>A</u> nalysis <u>C</u> rossta	b <u>L</u> ocations	<u>T</u> ools <u>W</u> indow	<u>H</u> elp			
2016-2020 Ala	abama Integrated (Crash Data	\sim	Ran Off Road C015	OR ROR C017	~	S 1/ 1	1/2016 ~ 12/31/202
uppress Zero Valu	es: None	~ Select	Cells: 🔳 🛛 📆	9		Colu	mn: Day of the Week	; Row: Time of Day
	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	TOTAL
2:00 Midnight to	416	228	168	188	181	226	378	1785
12:59 AM	5.61%	3.64%	2.80%	3.17%	2.90%	3.28%	4.69%	3.81%
:00 AM to 1:59 AM	446	155	149	156	173	212	370	1661
	6.01%	2.48%	2.49%	2.63%	2.77%	3.07%	4.59%	3.55%
2:00 AM to 2:59 AM	424 5.72%	137 2.19%	142 2.37%	145 2.44%	145	197 2.86%	401 4.97%	1591 3.40%
3:00 AM to 3:59	390	126	108	135	119	172	355	1405
AM AM to 5.55	5.26%	2.01%	1.80%	2.27%	1.90%	2.49%	4.40%	3.00%
4:00 AM to 4:59	301	138	138	146	127	169	307	1326
AM	4.06%	2.20%	2.30%	2.46%	2.03%	2.45%	3.81%	2.83%
5:00 AM to 5:59	320	209	215	216	202	233	315	1710
AM to 5.55	4.31%	3.34%	3.59%	3.64%	3.23%	3.38%	3.91%	3.65%
6:00 AM to 6:59	322	274	275	278	274	270	291	1984
AM	4.34%	4.38%	4.59%	4.68%	4.38%	3.91%	3.61%	4.24%
7:00 AM to 7:59	250	307	339	337	295	312	265	2105
AM	3.37%	4.90%	5.66%	5.68%	4.72%	4.52%	3.29%	4.50%
3:00 AM to 8:59	224	267	275	251	242	275	239	1773
AM	3.02%	4.26%	4.59%	4.23%	3.87%	3.99%	2.96%	3.79%
0:00 AM to 9:59	206	261	219	250	208	232	226	1602
AM	2.78%	4.17%	3.65%	4.21%	3.33%	3.36%	2.80%	3.42%
0:00 AM to 10:59	228	271	262	214	228	248	231	1682
AM	3.07%	4.33%	4.37%	3.60%	3.65%	3.60%	2.87%	3.59%
1:00 AM to 11:59	216	264	256	195	248	243	270	1692
AM	2.91%	4.22%	4.27%	3.28%	3.97%	3.52%	3.35%	3.61%
12:00 Noon to	259	258	268	271	268	275	289	1888
12:59 PM	3.49%	4.12%	4.47%	4.56%	4.29%	3.99%	3.59%	4.03%
1:00 PM to 1:59	272	283	241	276	270	281	291	1914
PM	3.67%	4.52%	4.02%	4.65%	4.32%	4.07%	3.61%	4.09%
2:00 PM to 2:59	320	330	324	271	336	360	327	2268
PM	4.31%	5.27%	5.41%	4.56%	5.38%	5.22%	4.06%	4.84%
3:00 PM to 3:59	360	386	352	368	413	400	383	2662
PM	4.85%	6.16%	5.87%	6.20%	6.61%	5.80%	4.75%	5.69%
4:00 PM to 4:59	302	349	369	321	361	385	364	2451
PM	4.07%	5.57%	6.16%	5.41%	5.78%	5.58%	4.52%	5.23%
5:00 PM to 5:59 PM	334	325	327	341	373	334	366	2400
	4.50%	5.19%	5.46%	5.74%	5.97%	4.84%	4.54%	5.13%
6:00 PM to 6:59 PM	343	340	304	306	326	326	355	2300
	4.62%	5.43%	5.07%	5.15%	5.22%	4.73%	4.40%	4.91%
7:00 PM to 7:59 PM	316	315	283	276 4.65%	289 4.62%	307 4.45%	357	2143 4.58%
3:00 PM to 8:59	4.26%	5.03%	4.72%					
PM to 8:59	289 3.90%	266	245 4.09%	264 4.45%	281 4.50%	318 4.61%	336 4.17%	1999 4.27%
9:00 PM to 9:59	301	4.25%	267	266	4.50%	4.61%	4.17%	2217
PM to 9:59	4.06%	4.33%	4.46%	4.48%	4.88%	5.51%	5.30%	4.74%
0:00 PM to 10:59	286	250	228	257	289	346	434	2090
PM PM to 10:55	3.86%	3.99%	3.80%	4.33%	4.62%	5.02%	5.38%	4.46%
1:00 PM to 11:59	252	225	213	4.33%	263	370	424	1944
PM 1:00 PM to 11:59	3.40%	3.59%	3.55%	3.32%	4.21%	5.36%	5.26%	4.15%
	41	27	26	13	4.21%	27	60	228
Unknown	0.55%	0.43%	0.43%	0.22%	0.54%	0.39%	0.74%	0.49%
	7418	6262	5993	5938	6250	6898	8061	46820
TOTAL	15.84%	13.37%	12.80%	12.68%	13.35%	14.73%	17.22%	100.00%

5.7 Time of Day by Day of the Week

6.0 Factors Affecting Severity

6.1 RS Crash Severity

See Section 4.8 for the most harmful event in fatal RS crashes. The following compares crash severities for RS (Subset, red bars) vs. Non-RS crashes (Other, blue bars below table).

8 C	CARE 10.2.1.3 - [IMPACT Results -	2016-2020 Alab	ama Integrated	Crash Data - R	an Off Road CO	15 OR ROR CO	17 vs. Not Ran (Off Road C015 OR R — 🗆 🛛	×				
B	<u>File Dashboard Filters A</u>	nalysis <u>I</u> mpa	ct <u>L</u> ocations	<u>T</u> ools <u>W</u> i	ndow <u>H</u> elp			- 6	×				
¢?	2016-2020 Alabama Integrated Cr	ash Data	~	Ran Off	Road C015 OR F	ROR C017		✓ ♥ 1/ 1/2016 ∨ 12/31/2020	$ $ \sim				
Orde	ier: Natural Order 🗸 Desce	ending 🗸	Suppres	s Zero-Valued F	lows	Sign	nificance: Over	Representation V Threshold: 2.0	÷				
C02	25: Crash Severity	Subset Frequency	Subset Percent	Other Frequency	Other Percent	Odds Ratio	Max Gain	C020: E Distracted Driving Opinion C021: Distance to Fixed Object	^				
	Fatal Injury	631	1.35	3786	0.53	2.561*	384.597	C022: E Type of Roadway Junction/Feat	1 I				
	Suspected Serious Injury	2810	6.00	21590	3.00	2.000*	1404.866	C023: E Manner of Crash C024: School Bus Related					
	Suspected Minor Injury	6232	13.31	53031	7.37	1.806*	2780.602	C025: Crash Severity					
	Possible Injury	4579	9.78	66740	9.28	1.054*	235.384	C026: Intersection Related					
I	Property Damage Only	29449	62.90	556858	77.41	0.813*	-6792.792	C027: At Intersection	~				
	Unknown	3119	6.66	17388	2.42	2.756*	1987.343	Sort by Sum of Max Gain					
7	Display Filter Nam 2016-2020 Alabama Integrated Crash Data - Filter = Ran Off Road C015 OR ROR C017 vs. Not Ran Off Road C015 OR ROR C017 C025: Crash Severity												
	100 50 0		Suspected	Suspecte			Property						
	F	atal Injury	Serious Injury	Minor Inju			Damage Only	Unknown					

The rate of fatal injury crashes and the two highest injury classifications are consistently higher in RS crashes than that of non-RS crashes. Fatality crashes have 2.561 times their expected proportion, while the two highest non-fatal injury classifications have 2.000 and 1.806 times their expected proportions when compared with non-Roadside (non-RS) crashes. The Speed-at-Impact variable, considered next, indicates one of the primary reasons for this. However, the greatest cause of RS increased severity and death is their lack of proper restraints.

6.2 Speed	at Impact
-----------	-----------

🖡 C/	ARE 10.2.1.3 - [IMPACT Results	- 2016-2020 Alaba	ama Integrated	Crash Data - D	UI (Alcohol or D	rugs) AND No	t CU Estimated	Speed at Impact = 2 🗆 🗙
E E	ile <u>D</u> ashboard <u>F</u> ilters	<u>A</u> nalysis <u>I</u> mpao	t <u>L</u> ocations	<u>T</u> ools <u>W</u> i	ndow <u>H</u> elp			_ 8 >
6 8	2016-2020 Alabama Integrated 0	Crash Data	~	DUI (Alco	hol or Drugs)			✓ ♀ 1/ 1/2016 ∨ 12/31/2020 ∨
	-		1				·r 0	
		cending ~	Suppres	s Zero-Valued R	lows	Sign	ificance: Over	Representation V Threshold: 2.0
C224	CU Estimated Speed at Impa	ct Subset Frequency	Subset Percent	Other Frequency	Other Percent	Odds Ratio	Max Gain	C224: CU Estimated Speed at Impact
•	1 to 5 MPH	526	3.04	62844	15.87	0.192*	-2218.172	
	6 to 10 MPH	645	3.73	43533	10.99	0.339*	-1255.930	
	11 to 15 MPH	572	3.31	29167	7.36	0.449*	-701.618	
	16 to 20 MPH	528	3.05	21115	5.33	0.573*	-394.016	
	21 to 25 MPH	616	3.56	18569	4.69	0.760*	-194.842	
	26 to 30 MPH	739	4.27	19586	4.95	0.864*	-116.250	1
	31 to 35 MPH	1085	6.27	22770	5.75	1.091*	90.716	1
	36 to 40 MPH	1082	6.26	21270	5.37	1.165*	153.215	1
	41 to 45 MPH	2441	14.11	33362	8.42	1.676*	984.201	1
	46 to 50 MPH	1300	7.52	16228	4.10	1.835*	591.381	
	51 to 55 MPH	2254	13.03	26237	6.62	1.967*	1108.324	
	56 to 60 MPH	1345	7.78	12084	3.05	2.549*	817.335	
	61 to 65 MPH	1181	6.83	14507	3.66	1.864*	547.531	
	66 to 70 MPH	1271	7.35	16766	4.23	1.736*	538.889	
	71 to 75 MPH	455	2.63	3552	0.90	2.934*	299.897	
	76 to 80 MPH	471	2.72	2078	0.52	5.191*	380.261	
	81 to 85 MPH	200	1.16	590	0.15	7.763*	174.237	
	86 to 90 MPH	163	0.94	469	0.12	7.959*	142.520	
	91 to 95 MPH	37	0.21	100	0.03	8.473*	32.633	
	96 to 100 MPH	115	0.66	260	0.07	10.129*	103.647	
	Over 100 MPH	62	0.36	156	0.04	9.102*	55.188	
	CU is Not a Vehicle	174	1.01	2014	0.51	1.979*	86.056	
	CU is Unknown	33	0.19	28814	7.27	0.026*	-1225.204	Sort by Sum of Max Gain
1) 😪 🖉							🗌 Display Filter Nam
			2	016-2020 Alaba	ma Integrated Ci	ash Data		
				C224: CU Esti	mated Speed at	Impact		
	20				-			
	¹⁵							
	10 Ledoneuco							
	5							
	0							
		21 to 25 M	NPH	46 to 50 l		71 to 75 l	мрн	96 to 100 MPH
				C224: C	U Estimated Spe	ed at Impact		

It should be noted that the speed limit on County roads is generally 45 MPH, and it is generally lower on Municipal roads where the plurality of RS crashes occurs. All impact speeds above 21 MPH are significantly over-represented, and the over-representation generally increases with the increase in impact speeds up to 50 MPH, After that, the Odds Ratios stay in a range around 1.500.

The next cross-tabulation quantifies how this relates to the severity of the crash for RS crashes.

CARE 10.2.1.3 -	Crosstab Results	s - 2016-2020 Alaba	ma Integrated Cras	h Data - Filter = Rai	n Off Road C015 OR F	OR C017]	- 0
<u>F</u>ile <u>D</u> ashb	oard <u>F</u> ilters	<u>A</u> nalysis <u>C</u> rossta	b <u>L</u> ocations <u>1</u>	ools <u>W</u> indow	<u>H</u> elp		-
2016-2020 A	labama Integrated (Crash Data	\sim	Ran Off Road C015	OR ROR C017	~	· 💡 🌠 1/ 1
õuppress Zero Val	ues: Rows and Col	umns 🗸 Select	Cells: 🔳 🔻 🔣	9 C	olumn: Crash Severity	; Row: CU Estima	ted Speed at Impact
	Fatal Injury	Suspected Serious Injury	Suspected Minor Injury	Possible Injury	Property Damage Only	Unknown	TOTAL
1 to 5 MPH	1	4 0.14%	16 0.26%	10 0.22%	296 1.01%	15 0.48%	342 0.73%
	0.16%	0.14%	23	26	373	17	447
6 to 10 MPH	0.16%	0.25%	0.37%	0.57%	1.27%	0.55%	0.95%
11 to 15 MPH	0	8	36	39	438	13	534
TI to 15 MPH	0.00%	0.28%	0.58%	0.85%	1.49%	0.42%	1.14%
16 to 20 MPH	0	12	52	65	594	18	741
10102010111	0.00%	0.43%	0.83%	1.42%	2.02%	0.58%	1.58%
21 to 25 MPH	2	42	113	92	921	48	1218
	0.32%	1.49%	1.81%	2.01%	3.13%	1.54%	2.60%
26 to 30 MPH	7	56 1.99%	161 2.58%	140 3.06%	1064 3.61%	73 2.34%	1501 3.21%
	6	83	2.58%	227	3.61%	2.34 %	2382
31 to 35 MPH	0.95%	2.95%	4.83%	4.96%	5.57%	4.01%	5.09%
	18	107	307	216	1428	104	2180
36 to 40 MPH	2.85%	3.81%	4.93%	4.72%	4.85%	3.33%	4.66%
	32	260	565	369	2254	157	3637
41 to 45 MPH	5.07%	9.25%	9.07%	8.06%	7.65%	5.03%	7.77%
46 to 50 MPH	26	160	316	223	1175	71	1971
40 t0 50 MIFH	4.12%	5.69%	5.07%	4.87%	3.99%	2.28%	4.21%
51 to 55 MPH	64	331	475	293	1438	109	2710
51 to 55 MPH	10.14%	11.78%	7.62%	6.40%	4.88%	3.49%	5.79%
56 to 60 MPH	31	135	269	142	755	50	1382
	4.91%	4.80%	4.32%	3.10%	2.56%	1.60%	2.95%
61 to 65 MPH	32	136	197	136	866	49	1416
	5.07%	4.84%	3.16%	2.97%	2.94%	1.57%	3.02%
66 to 70 MPH	46	137	210	107	848	31	1379
	7.29%	4.88%	3.37%	2.34%	2.88%	0.99%	2.95%
71 to 75 MPH	12 1.90%	40 1.42%	45 0.72%	38 0.83%	187	13 0.42%	335 0.72%
	1.30%	35	45	17	117	8	236
76 to 80 MPH	2.22%	1.25%	0.72%	0.37%	0.40%	0.26%	0.50%
	7	14	10	7	25	2	65
81 to 85 MPH	1.11%	0.50%	0.16%	0.15%	0.08%	0.06%	0.14%
001 00 1001	6	13	17	5	25	2	68
86 to 90 MPH	0.95%	0.46%	0.27%	0.11%	0.08%	0.06%	0.15%
91 to 95 MPH	2	4	4	0	2	0	12
51 10 35 MIFH	0.32%	0.14%	0.06%	0.00%	0.01%	0.00%	0.03%
96 to 100 MPH	8	13	9	6	22	2	60
	1.27%	0.46%	0.14%	0.13%	0.07%	0.06%	0.13%
Over 100 MPH	5	4	7	5	14	0	35
	0.79%	0.14%	0.11%	0.11%	0.05%	0.00%	0.07%
E Stationary	0	1	6	7	47	5	66
	0.00%	0.04%	0.10%	0.15%	0.16%	0.16%	0.14%
Unknown	292 46.28%	1143 40.68%	2838 45.54%	2224 48.57%	13528 45.94%	1941 62.23%	21966 46.92%
	46.20%	40.68%		48.57%	45.34 % 842		1294
Not Applicable	2.06%	1.46%	132 2.12%	2.45%	2.86%	154 4.94%	2.76%
	6	24	78	73	550	112	843
CU is Unknown	0.95%	0.85%	1.25%	1.59%	1.87%	3.59%	1.80%
	631	2810	6232	4579	29449	3119	46820
TOTAL	1.35%	6.00%	13.31%	9.78%	62.90%	6.66%	100.00%

6.3 Severity by Impact Speed Cross-Tabulation

6.4 Discussion of Severity vs Speed Cross-Tabulation

The display above presents information on the effect of increased impact speed on the severity of RS crashes. Notice the red in the Fatality and Serious Injury cells as speeds increase. What is more enlightening is the probability that the crash results in a fatality as a function of impact speed. This is given in the following table:

Speed at Impact	Fatality Odds (1 in)	Increase Probability above 31-35
31-35	397	1.0
36-45	118	3.3
46-55	59	6.7
56-65	45	8.8
66-75	29	13.7
76-85	13	30.5
86-95	9	44.1
Above 95	8	49.6

Obviously, speed kills, and a reduction in speed at impact by as little as 5 MPH can have a major effect on whether or not that crash will be fatal. A reduction in impact speeds by 10 MPH would cut the number of fatal crashes in half. This is the reason that selective enforcement is effective.

However, there is another major factor in effect here as well – the failure of RS drivers to be properly restrained, which will be covered in the next separate attribute below (6.5; Restraint Use by Causal Drivers in RS Crashes), which is also correlated with Impaired Drivers.

6.5 Restraint Use by Drivers in RS Crashes

The following display presents a comparison of RS-crash driver safety belt use against those who were not RS over the same five-year time period.

Risk-taking involved in most of the RS causes does not stop with excess speed; it extends to not being properly restrained. The above analysis demonstrates that the causal driver in an RS crash is over three (3.084) times more likely to be unrestrained than in the non-RS crash. The next analysis demonstrates how this contributes to crashes becoming fatal.

CARE 10.2.1	CARE 10.2.1.3 - [Crosstab Results - 2016-2020 Alabama Integrated Crash Data - Filter = Ran Off Road C015 OR ROR C017]												
🖡 <u>F</u> ile <u>D</u> as	hboard <u>F</u> ilters	<u>A</u> nalysis <u>C</u> rosstal	o <u>L</u> ocations <u>1</u>	ools <u>W</u> indow	<u>H</u> elp			- 8 ×					
😵 2016-2020 Alabama Integrated Crash Data 🗸 Ran Off Road C015 OR ROR C017 v 🖓 😰 1/ 1/2016													
Suppress Zero	Suppress Zero Values: Rows and Columns 🗸 Select Cells: 🗐 🗸 🧭 Column: Crash Severity ; Row: CU Driver/Non-Motorist Safety Equipment 👰												
	Fatal Injury	Suspected Serious Injury	Suspected Minor Injury	Possible Injury	Property Damage Only	Unknown	TOTAL	^					
None Used - Motor Vehicle O	321 c 50.87%	837 29.79%	857 428 1044 13.75% 9.35% 3.55%			182 5.84%	3669 7.84%						
Shoulder and La Belt Used	25.36%	1304 46.41%	4145 66.51%	3355 73.27%	22308 75.75%	1508 48.35%	32780 70.01%						

6.6 Crash Severity by Restraint Use (C323) for RS Crash CU Drivers

A comparison of the probability of a fatal crash for the two restraint categories of RS crashes indicates that a fatality is about 18 times (17.92) more likely if the RS causal driver is not properly restrainted. The probability is estimated by 321 fatality crashes out of 3,669 when restraints were not used (1 in 11.4), as opposed to only 160 fatal crashes out of 32,780 crashes when restraints were used (1 in about 205 crashes). So the combined effect of lower restraint use and higher speed is a devastating combination that accounts for the high lethality of RS crashes.

6.7 Number of Vehicles Involved

The following display presents a comparison of RS crash number of vehicles against number of vehicles in non-RA crashes over the five year time period of the study.

The above shows that the number of single vehicle RS crashes is over-represented by an Odds Ratio of 5.592 (proportion was close to six times more than expected). Over 9 out of 10 (93.45%) of the RS crashes were single vehicle. This would be expected when most of the crashes involved running off the road and crashing into something in the roadside environment.

6.8 Police Arrival Delay

🔋 CA	RE 10.2.1.3 - [IMPACT R	esults - 2016-	2020 Alaba	ama Integra	ted Crash D	ata - Ran Of	f Road C015	i OR ROR C017 vs. N — 🗆 🗙
Ei	le <u>D</u> ashboard <u>F</u> ilte	ers <u>A</u> nalysi	s <u>I</u> mpa	t <u>L</u> ocatio	ons <u>T</u> ools	Window	/ <u>H</u> elp	_ & ×
6	2016-2020 Alabama Integ	rated Crash Da	ata	~	R	an Off Road	C015 OR RO	R C017 - 🖓 🏆 1/
Order	Max Gain 🗸 🗸	Descending	Ý	Supp	ress Zero-Va	alue Significa	ance: Over	Representation V Threshold: 2.0
C036	Police Arrival Delay	Subset Frequency	Subset Percent	Other Frequency	Other Percent	Odds Ratio	Max Gain	C034: E Police Present at Time of Crast C035: Police Notification Delay
•	0 to 5 minutes	14383	30.72	182421	25.37	1.211*	2506.745	C036: Police Arrival Delay
	6 to 10 minutes	12422	26.53	180665	25.12	1.056*	660.067	C037: EMS Arrival Delay
	11 to 15 minutes	6270	13.39	103768	14.43	0.928*	-485.665	C038: Adjusted EMS Arrival Delay C039: Non-Vehicular Property Damage
	16 to 20 minutes	3372	7.20	59466	8.27	0.871*	-499.448	C040: Agency ORI
	21 to 30 minutes	3279	7.00	65118	9.05	0.773*	-960.413	C042: Highway Patrol Troops
	31 to 45 minutes	2466	5.27	52468	7.30	0.722*	-949.853	C043: Highway Patrol Posts
	46 to 60 minutes	1334	2.85	28650	3.98	0.715*	-531.217	C044: ALEA Division C045: ALDOT Area
	61 to 90 minutes	1367	2.92	24908	3.46	0.843*	-254.599	C045: ALDOT Area C046: ALDOT Region
	91 to 120 minutes	482	1.03	7933	1.10	0.933	-34.466	C047: ADECAAHSO Region
	121 to 180 minutes	359	0.77	5104	0.71	1.080	26.711	C048: RPO
	Over 180 minutes	856	1.83	7435	1.03	1.768*	371.955	C049: MPO C050: Has Coordinate
	Unknown	230	0.49	1226	0.17	2.882*	150.183	Sort by Sum of Max Gain
0	i 🗞 🖉							
				2016-2020 A	labama Integ	grated Crash	Data	
				C03	6: Police Arri	val Delay		
	40							
	20							
⁶								
	0							
		6 to 10 minutes	16 to 20) Ominutes	31 to 45 minut	tes 61 to	90 minutes	121 to 180 minutes Unknown
					C036: Police	Arrival Dela	у	

RS crashes police arrival delays were quite favorable, with the arrival time being ten minutes or less over 57% of the time. All arrival delays over 10 minutes were significantly under-represented. There can be little doubt that this has to do with the urban (or near-urban) nature of these crashes (77.77%, see Section 4.3). The analysis below shows how this impacts EMS arrival time, which is a comparison of only those crashes that included injuries, and thus would generally call for an EMS response.

6.9 EMS Arrival Delay

🖡 CA	RE 10.2.1.3 - [IMPAC	CT Resu	lts - 2016-202	0 Alabama	Integrated Cra	ash Data - Ra	n Off Road C	015 OR ROR C	017 AND Not Ad	djust —		Х
🖡 <u>E</u> il	e <u>D</u> ashboard	<u>F</u> ilters	<u>A</u> nalysis	<u>I</u> mpact	<u>L</u> ocations	<u>T</u> ools <u>W</u> in	dow <u>H</u> elp				-	đΧ
6	2016-2020 Alabama I	Integrate	d Crash Data		\sim	Ran Off R	oad C015 OR	ROR C017		~ 💡	1/ 1/	2016 ~
Order:	Max Gain	~ D	escending	~ [Suppress Z	ero-Valued Ro	ws Signi	ficance: Over	Representation	✓ Thresho	ld: 2.0	-
C038:	Adjusted EMS Arriv	val Dela	V Subset Frequency	Subset Percent	Other Frequency	Other Percent	Odds Ratio	Max Gain	C038: Adjust	ted EMS Arrival [Delay	
•	0 to 5 minutes		5026	25.71	43342	26.61	0.966*	-176.903				
	6 to 10 minutes		6732	34.44	52455	32.21	1.069*	435.145				
	11 to 15 minutes		3731	19.09	29418	18.06	1.057*	199.575				
	16 to 20 minutes		1786	9.14	15727	9.66	0.946*	-101.916				
	21 to 30 minutes		1414	7.23	13684	8.40	0.861*	-228.668				
	31 to 45 minutes		548	2.80	5554	3.41	0.822*	-118.719				
	46 to 60 minutes		161	0.82	1479	0.91	0.907	-16.544				
	61 to 90 minutes		85	0.43	779	0.48	0.909	-8.513				
	91 to 120 minutes		25	0.13	155	0.10	1.344	6.393				
	121 to 180 minutes		22	0.11	146	0.09	1.255	4.474				
	Over 180 minutes		19	0.10	111	0.07	1.426	5.675	Sort by Sur	n of Max Gain		
0	i 😪 🧟								-			
					2016-2020 AI	abama Integra	ited Crash Da	ta				
					C038: Ad	justed EMS Ar	rival Delay					
	40											
1	2 - 7											
1000	20 -											
ů												
	0											
		6	5 to 10 minute	s 16 to	20 minutes	31 to 45 m		1 to 90 minutes	121 to 180	minutes		
					C038	Adjusted EM	S Arrival Dela	iy .				

For much the same reasons as the police arrival delays, EMS delays were significantly over-represented for Roadside (RS) crashes in the 6-10 and 11-16 minute categories. All longer delay times were under-represented up until the very high categories (91-120; 121-180; and Over 180 minutes). There were relatively few in these very long categories, which were probably caused by the vehicles not be discovered late night.

7.0 Driver and Vehicle Demographics

7.1 Driver Age

6	2016-2020 Alabama Integra	ated Crash Data		~	Ran Off F	Road C015 OI	R ROR C017		~ 💡	1/ 1/2016 🗸
Order:	Max Gain 🗸 🗸	Descending	~ [Suppress Z	ero-Valued R	ows Sig	nificance: Over Re	epresentation	✓ Threshold:	2.0 韋
C107:	CU Driver Raw Age	Subset Frequency	Subset Percent	Other Frequency	Other Percent	Odds Ratio	Max ^ Gain	C107: CU Dri	iver Raw Age	
•	15	136	0.32	1141	0.18	1.776*	59.421			
	16	1438	3.41	18078	2.88	1.185*	224.684			
	17	1523	3.61	19701	3.14	1.152*	200.756			
	18	1849	4.39	22847	3.64	1.206*	315.610			
	19	1731	4.11	23456	3.73	1.100*	156.737			
	20	1610	3.82	22110	3.52	1.085*	126.074			
	21	1614	3.83	20709	3.30	1.161*	224.103			
	22	1481	3.51	19771	3.15	1.116*	154.058			
	23	1435	3.40	18215	2.90	1.174*	212.490			
	24	1321	3.13	17236	2.74	1.142*	164.196			
	25	1273	3.02	16551	2.63	1.146*	162.170			
	26	1112	2.64	16013	2.55	1.035	37.278			
	27	1074	2.55	15198	2.42	1.053	53.977			
	28	1061	2.52	14526	2.31	1.088*	86.079			
	29	1051	2.49	13760	2.19	1.138*	127.489			
	30	975	2.31	13070	2.08	1.111*	97.799			
	31	926	2.20	12347	1.97	1.117*	97.324			
	32	845	2.00	11938	1.90	1.055	43.774 🗸	Sort by Sum	of Max Gain	
1	S 1									
				2016-2020 Al	labama Integr	ated Crash D)ata			
				C107	7: CU Driver I	Raw Age				
	6—							1		
	_									
										_
	4									
Frequency										
requ		in the second se								
LL .	2	and the second second								
			Million	1						
				1000111	11110101	111111	Itera			
							had been a state of the second se	111111		
	0								Hilling	
			34		54		74	1	94	
					C107: CU Dr	iver Raw Age	e			

The table display above presents a comparison of RS crash causal driver age against the same for crashes that were not RS for ages of 15 through 32. The blue (non-RC) bars illustrate the problems that 16-20-year-old drivers have in general, but the red bars show that they are even more over-represented in RS crashes. The target age groups would be up to about 39 years of age, with additional concentration in the 16-25-year-old group.

7.2 Roadside Crash Driver Gender

The red bars and the blue bars each sum to 100%. So the breakdown in RS causal drivers is 62.76% male and 37.24% female. For non-RC, the percentage is 56.15 male and 43.85 female, which also gives a good estimate for male/female drivers in general. These differences in proportions certainly indicate that males are a greater cause of the RS problems, and if there are countermeasures that can be directed toward them, doing so would be much more cost-effective than those directed toward all drivers, all other things being equal.

7.3 Causal Vehicle Types with 30 or more Crashes

The display above presents a comparison of RS crash causal unit type against the same for crashes that were non-RS. Vehicles types with less than 30 crashes in the RS dataset were removed for the above display. Passenger Cars have the highest for potential crash reduction according to the Max Gain. However, Motorcycles have a much higher over-representation (2.591), indicating well over twice the expected proportion. None of the other classifications have significant over-representations, indicating that their proportions are about as expected. Some vehicles, notably Tractor/Semi-Trailers, Mini-vans, Pick-Ups and Sport Utility Vehicles (SUVs) were under-represented indicating their tendency to avoid RS crashes.

7.4 Number of Pedestrians

8	CARE 10.2.1.3 -	[IMPACT Resu	ılts - 2016-20	20 Alabama li	ntegrated Cra	sh Data - Ran	Off Road C0	15 OR ROR C	017 vs. Not Ran Off	_		×
1	<u>F</u> ile <u>D</u> ashbo	ard <u>F</u> ilters	<u>A</u> nalysis	<u>I</u> mpact <u>I</u>	ocations	<u>F</u> ools <u>W</u> ind	ow <u>H</u> elp				-	₽ ×
6 2	2016-2020 Ala	abama Integrate	ed Crash Data		\sim	Ran Off Ro	ad C015 OR F	ROR C017	~ '	9 😨	1/ 1/2	016 \sim
Ord	er: Natural Orde	r v A	scending	~ v	Suppress Ze	ro-Valued Rov	vs Signifi	cance: Over	Representation ~	Threshold	: 2.0	-
C05	7: Number of F	Pedestrians	Subset Frequency	Subset Percent	Other Frequency	Other Percent	Odds Ratio	Max Gain	C050: Has Coordin C051: E MapClick			^
	No Pedestria	ns Involved	46742	99.83	715381	99.44	1.004*	183.112	C052: Number of \			
	1 Pedestrian	Involved	67	0.14	3864	0.54	0.266*	-184.479	C053: Number of E C054: Number of F			
	2 Pedestrians	Involved	7	0.01	126	0.02	0.854	-1.200	C054: Number of N			
	3 Pedestrians	Involved	3	0.01	15	0.00	3.073	2.024	C056: Number of N			
	4 Pedestrians	s Involved	1	0.00	3	0.00	5.122	0.805	Sort by Sum of Ma	x Gain	_	
0	G 🗞 🖉											
					2016-2020 Ala C057: N	bama Integrat lumber of Ped		3				
	100											
	ک Leedneuc											
	0		No Pedestria Involved	ns 1 Pedes	strian Involved	l 2 Pedestriar Involved		l Pedestrians Involved	4 Pedestrians Involved			
					C057	: Number of P	edestrians					

Pedestrians are generally under-represented in RS crashes, indicating that most pedestrian crashes occur when pedestrians venture into the roadway. This positive finding may be useful in pedestrian countermeasures. Pedestrians need to be as far from the traffic stream as they can possibly be.

7.5 Driver License Status

🖡 CA	RE 10.2.1.3 - [IMPACT Res	ults - 2016-202	20 Alabama Ir	ntegrated Cra	sh Data - Ran	Off Road C01	15 OR ROR CO)17 AND Not	CU Dri — 🗆	×
E E	le <u>D</u> ashboard <u>F</u> ilters	<u>A</u> nalysis	<u>I</u> mpact <u>L</u>	ocations <u>T</u>	ools <u>W</u> ind	ow <u>H</u> elp			-	8 ×
6 °	2016-2020 Alabama Integrat	ed Crash Data		\sim	Ran Off Roa	ad C015 OR R	OR C017		Y S	/2016 ~
Order	Max Gain 🗸 🗸	Descending	~ 2] Suppress Ze	ro-Valued Row	/s Signific	ance: Over	Representation	n ~ Threshold: 2.	0 🜲
C114:	CU Driver License Status	Subset Frequency	Subset Percent	Other Frequency	Other Percent	Odds Ratio	Max Gain 👻	C114: CU	Driver License Status	
•	Not Applicable/Unlicensed	2917	7.02	32036	5.11	1.376*	796.593			
	Suspended	1815	4.37	16870	2.69	1.625*	698.404			
	Revoked	893	2.15	7124	1.14	1.894*	421.475			
	Expired	614	1.48	6216	0.99	1.492*	202.574			
	Left State	40	0.10	223	0.04	2.710*	25.240			
	Canceled	33	0.08	282	0.04	1.768*	14.335			
	E Test Required	8	0.02	113	0.02	1.070	0.521			
	Denied	16	0.04	270	0.04	0.895	-1.871			
	Current/Valid	35198	84.75	562190	89.59	0.946*	-2012.384	Sort by S	um of Max Gain	
1) 🐼 🖉									
			:	2016-2020 Ala	bama Integrate	ed Crash Data				
				C114: CL	J Driver Licens	se Status				
	100									
	50									
	50									
	۳ – – –									
	0	1			1	1	1	1		
		ensec	Suspended. Read-od.	Expired -	Left State	Canoeled-	E Test Required -	Denied -	Current / Valid	
		Unlio	dsns ²	2 10	Left	Gar	at Be			
		appe					ETa		0	
		Not Applicable/Unlicensed								
		Not								
				C11.	4: CU Driver Li	ioonoo Statua				
				CTI	+. CO Driver L	icense Status				

Clearly RS crashes are over-represented in RS causal drivers without legitimate licenses. They make up about 15% of RS causal drivers.

7.6 Driver Employment Status

In our current era when the economy is playing such a big role in traffic safety, the quantification and tracking of the employment proportion of drivers involved in RS crashes is important. This indicates that their unemployment rate is about 24.6% higher than expected. This relationship is not surprising because of the underlying drug/alcohol root cause of many RS crashes (8.3-8.4). The correlation between not having a job and being involved in an RS crash should be watched carefully going forward in that it could affect the type and location for countermeasures.

8.0 Driver Behavior

8.1 Primary Contributing Circumstances (RS & Items < 100 Crashes Removed)

	2016-2020 Alabama	a Integrated Crash Data		\sim	Ran Off	Road C015	OR ROR	C017	~ 💡 😨
rder:	Max Gain	 ✓ Descending 		Suppress Z	ero-Valued	Re Significa	ance: Ove	r Represent	ation V Threshold: 2.0
015:	Primary Contribu	ting Circumstance	Subset requency	Subset Percent	Other requency	Other Percent	Odds Ratio	Max Gain	C015: Primary Contributing (
	Driving too Fast for	Conditions	4278	18.00	24862	5.21	3.455*	3039.852	
	DUI		3331	14.02	17246	3.61	3.878*	2472.135	
	E Swerved to Avoi	d Vehicle	2781	11.70	15847	3.32	3.524*	1991.807	
	E Fatigued/Asleep		2166	9.12	10844	2.27	4.011*	1625.960	
	E Aggressive Oper	ation	1727	7.27	11306	2.37	3.067*	1163.952	
	E Over Correcting/	Over Steering	1365	5.74	6377	1.34	4.298*	1047.420	
	E Swerved to Avoi	d Animal	1276	5.37	6520	1.37	3.930*	951.299	
	Over Speed Limit		1237	5.21	9702	2.03	2.560*	753.833	
	Defective Equipme	ent	1084	4.56	11194	2.35	1.944*	526.530	
	E Other - No Improper Driving		710	2.99	7852	1.65	1.816*	318.964	
	E Distracted by Use of Electronic Communic		530	2.23	6182	1.30	1.722*	222.131	
	E Swerved to Avoi	d Object	199	0.84	1242	0.26	3.217*	137.147	
	E Distracted by Fal	llen Object	170	0.72	2278	0.48	1.499*	56.554	
	E Distracted by Use of Other Electronic Devi		140	0.59	2440	0.51	1.152	18.486	
	E Distracted by Passenger		157	0.66	2846	0.60	1.108	15.267	
	Vision Obstructed		182	0.77	3533	0.74	1.034	6.054	
	E Other Distraction Inside the Vehicle		722	3.04	16279	3.41	0.891*	-88.707	
	E Ran Stop Sign		234	0.98	7064	1.48	0.665*	-117.793	
	E Other Improper A	E Other Improper Action		1.44	12203	2.56	0.563*	-265.719	
	E Crossed Centerline		101	0.43	9853	2.06	0.206*	-389.687	
	E Other Distraction Outside the Vehicle Made Improper Tum Improper Lane Change/Use Unseen Object/Person/Vehicle		207	0.87	12838	2.69	0.324*	-432.343	
			251	1.06	14536	3.05	0.347*	-472.904	
			103	0.43	42067	8.82	0.049*	-1991.9	
			172	0.72	48008	10.06	0.072*	-2218.8	
	Misjudge Stopping	161	0.68	67063	14.05	0.048*	-3178.7		
	Followed too Close	•	137	0.58	105462	22.10	0.026*	-5115.0	Sort by Sum of Max Gain
0) 🗞 🖉								
			2016-	2020 Alaba	ma Integrate	ed Crash Da	ata		
			C015	: Primary C	ontributing	Circumstan	ce		
	30								
>	20								
- Cla									
Frequency	10								
4									
		100664		fic					
	E Aggressive Operation		E Other - No E Distracted E Crossed Centerline Misj Improper Driving by Passenger						terline Misjudge Stopping Distance
				C015: Prin		oy nassenger			Distance

8.2 Discussion of Primary Contributing Circumstances (PCC) Result Above

The RS PCC item, Ran off Road, (Frequency:17,282; Proportion: 36.91%) was removed from the comparisons for this analysis because it prevented some of the other items from being identified. It was forced to be this high by the filter (see 3.1). Items listed were reported for those RS crashes that were defined by other items in the RS filter. So, in essence, these results demonstrate the driver behaviors that *accompanied the RS* as it was defined by other attributes in the filter (i.e., C017, First Harmful Event). The display above is for those crash PCCs that had 100 or more occurrences.

Items over-represented by over twice their expected proportion (when compared to non-RS crashes) are ordered by Max Gain as follows:

- Driving Too Fast for Conditions,
- DUI (Impaired Driving),
- Swerved to Avoid Vehicle,
- Fatigued/Asleep,
- Aggressive Operation,
- Over Correcting/Over Steering,
- Swerved to Avoid Animal [most often deer]
- Over Speed Limit,
- Swerved to Avoid Object.

Most of the above are reasonably associated with running off the road. Each should be viewed in terms of their relative positions in the table as opposed to being the absolute cause.

8.3 CU Driver Officer's Opinion Alcohol

While Impaired Driving/Alcohol was indicated as the cause of the crash for only 10.54% of the RS crashes, the fact that this proportion was over-represented by a factor of 3.619 (close to 4 times the expected from the non-RS crashes indicates its importance. ID/DUI tends to be under-reported, and there is no doubt that its reduction would have a major impact on reducing the number of RS crashes.

8.4 CU Driver Officer's Opinion Drugs

The reported non-alcohol drug cases for RS crashes is less than half of that for alcohol. The 1,464 cases are only about 4.00% of all RS crashes. However, the Odds Ratio indicates that it has an over-representation comparable to alcohol. In both cases (RS and non-RS), drug use is difficult to detect compared to alcohol, which has well-established tests for the blood-alcohol level that are relatively easy to administer. Our conclusion is that both alcohol and non-alcohol drug use are major contributors to increasing the frequency of RS crashes, and their use is further compounded it they choose to avoid detection by using county roads.