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FOREWORD 

Advanced driver assistance systems (ADAS) are becoming increasingly prevalent on today’s 
roadways. The long-term effects of using these systems are still being explored. Some 
researchers have noted that drivers’ trust in automation tends to increase with continued use and 
caution that they may become overly reliant. Such reliance may make everyday drivers less 
capable of responding to critical events, yet automation has the potential to increase the 
operational efficiency of the roadway. However, these potential benefits can only be achieved if 
drivers are able to accept and use an automated system in a way that consistently promotes road 
safety. 

This report documents a longitudinal experiment aimed at understanding how continued use of 
automated systems influences drivers’ behavior over time as they adapt to the technology. 
Participants in a driving simulator gained experience with two ADAS over the course of four 
driving sessions. The results suggest that some driver assistance systems may facilitate increased 
attention to the forward roadway rather than reduce awareness. This report highlights the 
potential for these systems to improve drivers’ safety even after they adapt to the technology 
following repeated exposure. 

This report should be of interest to ADAS developers, State and local transportation agencies 
considering how infrastructure may adapt to ADAS, and others interested in understanding how 
the widespread implementation of these systems is anticipated to affect roadway safety. 

Brian P. Cronin, P.E. 
Director, Office of Safety and Operations  

Research and Development 

Notice 
This document is disseminated under the sponsorship of the U.S. Department of Transportation 
(USDOT) in the interest of information exchange. The U.S. Government assumes no liability for 
the use of the information contained in this document. 

The U.S. Government does not endorse products or manufacturers. Trademarks or 
manufacturers’ names appear in this report only because they are considered essential to the 
objective of the document. 

Quality Assurance Statement 
The Federal Highway Administration (FHWA) provides high-quality information to serve 
Government, industry, and the public in a manner that promotes public understanding. Standards 
and policies are used to ensure and maximize the quality, objectivity, utility, and integrity of its 
information. FHWA periodically reviews quality issues and adjusts its programs and processes to 
ensure continuous quality improvement. 

Recommended citation: Federal Highway Administration, Driver Adaptation to Vehicle 
Automation: The Effect of Driver Assistance Systems on Driving Performance and System 
Monitoring (Washington, DC: 2022) https://doi.org/10.21949/1521875. 



TECHNICAL REPORT DOCUMENTATION PAGE 
1. Report No.
FHWA-HRT-22-072

2. Government Accession No. 3. Recipient’s Catalog No.

4. Title and Subtitle
Driver Adaptation to Vehicle Automation: The Effect of
Driver Assistance Systems on Driving Performance and
System Monitoring

5. Report Date
June 2022
6. Performing Organization Code:
HRSO-30

7. Author(s)
Starla M. Weaver (ORCID: 0000-0002-9559-8337), Szu-Fu
Chao (ORCID: 0000-0002-2037-5200), Brian H. Philips
(ORCID: 0000-0002-8426-0867)

8. Performing Organization Report No.

9. Performing Organization Name and Address
Leidos, Inc
6300 Georgetown Pike
McLean, VA 22101

10. Work Unit No.
HRSO-30
11. Contract or Grant No.
DTFH61-13-D-00024

12. Sponsoring Agency Name and Address
Office of Safety and Operations Research and Development
Federal Highway Administration
6300 Georgetown Pike
McLean, VA 22101-2296

13. Type of Report and Period Covered
Technical Report Sept 2015–June 2022
14. Sponsoring Agency Code
Intelligent Transportation Systems Joint Program
Office (ITS/JPO) and HRSO-30

15. Supplementary Notes
Brian Philips (HRSO-30) is the contract officer’s representative and the Government task manager.
16. Abstract
Little is known about how driving performance and attention change over time with increased automation. The
current study assessed the effect of varying levels of vehicle automation on driver performance over time.
Participants gained experience with advanced driver assistance systems (ADAS) across four sessions in the driving
simulator. The specific driver assistance system was manipulated between subjects and included cooperative
adaptive cruise control (CACC), lane-keeping assist (LKA), a combination of CACC and LKA (CACC + LKA),
and a control condition with no driving assistance features. Adaptation was assessed by measuring drivers’
response to uneventful roadway conditions and unexpected critical events during both earlier and later exposure to
the technology. Overall, the results of the current study paint an optimistic view of driver assistance technology.
Participants who used the technology were able to do so in a way that benefited their driving performance and
allowed them to direct more of their attention to the road ahead. Further, driver adaptation was not associated with
impaired responses to emergency events. The results suggest that Level 1 driver assistance systems have the
potential to benefit driver safety even after drivers have adapted to the technology following repeated use.
17. Key Words
Advanced driver assistance systems, behavioral
adaptation, adaptive cruise control, lane-keeping
assist

18. Distribution Statement
No restrictions. This document is available to the public
through the National Technical Information Service,
Springfield, VA 22161.
http://www.ntis.gov

19. Security Classif. (of this report)
Unclassified

20. Security Classif. (of this page)
Unclassified

21. No. of Pages
29

22. Price
N/A

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized.



ii 

  



iii 

TABLE OF CONTENTS 

CHAPTER 1. INTRODUCTION ................................................................................................ 1 

CHAPTER 2. METHOD .............................................................................................................. 5 
Participants .............................................................................................................................. 5 
Experimental Design ............................................................................................................... 5 
Equipment ............................................................................................................................... 5 

Lane-Keeping Assist ........................................................................................................... 5 
Cooperative Adaptive Cruise Control ................................................................................. 5 
Sensors To Detect Physiological Responses ....................................................................... 6 

Procedure ................................................................................................................................. 6 
Data Analysis ........................................................................................................................... 7 
Physiological Analysis ............................................................................................................. 8 

CHAPTER 3. RESULTS .............................................................................................................. 9 
Driving Performance .............................................................................................................. 9 

Longitudinal Control ........................................................................................................... 9 
Lateral Control .................................................................................................................. 10 

Eye Gaze ................................................................................................................................ 11 
Critical Events ....................................................................................................................... 12 
Physiological Response ......................................................................................................... 14 
Trust in Technology .............................................................................................................. 15 

CHAPTER 4. DISCUSSION ..................................................................................................... 17 

ACKNOWLEDGMENTS .......................................................................................................... 21 

REFERENCES ............................................................................................................................ 23 
 
  



iv 

LIST OF FIGURES 

Figure 1. Illustration. Experimental route. ...................................................................................... 7 
Figure 2. Chart. Speed variability as a function of condition and session. Error bars 

represent standard errors. .................................................................................................... 10 
Figure 3. Chart. Lane deviation as a function of condition. Error bars represent standard 

errors. ................................................................................................................................... 10 
Figure 4. Chart. Proportion of gazes directed at front windshield as a function of condition 

and session number. ............................................................................................................ 11 
Figure 5. Chart. Proportion of gazes directed toward the inside of the vehicle as a function 

of condition and session number. ........................................................................................ 12 
Figure 6. Chart. Percentage of participants in each condition who applied the brakes during 

the critical event. ................................................................................................................. 13 
Figure 7. Chart. SCR frequency rate across sessions as a function of condition. Error bars 

represent standard errors. .................................................................................................... 14 
Figure 8. Chart. Trust ratings as a function of session and driver assistance technology. ........... 15 

 

LIST OF TABLES 

Table 1. Crash rate during each session as a function of condition. ............................................. 13 

 

LIST OF ABBREVIATIONS 

ACC  adaptive cruise control 
ADAS  advanced driver assistance systems 
CACC  cooperative adaptive cruise control 
EDA  electrodermal activity 
LKA  lane-keeping assist 
M  mean 
PPG  photoplethysmography 
SAE  SAE International 
SCR  skin conductance responses 



1 

CHAPTER 1. INTRODUCTION 

This report is in support of a project titled “Driver Acceptance of Vehicle Automation—
Function-Specific Automation (Level 1) Applications.” The goals of the project are threefold, as 
follows: 

1. Improve general understanding of human factors issues related to vehicle automation. 

2. Perform experiments to support Level 1 vehicle automation research. 

3. Publish information to support the development of standards and performance 
requirements for Level 1 automation. 

SAE (SAE International) specifies six levels of vehicle automation based on the roles and 
responsibilities of the driver and the automated system.(1) Under Level 1 automation, the driver 
remains responsible for all driving functions but temporarily cedes either lateral or longitudinal 
control of a vehicle to the automated system. A lane-centering system, which maintains lateral 
control of a vehicle, or an adaptive cruise control (ACC) system, which maintains longitudinal 
control of a vehicle, are examples of advanced driver assistance systems (ADAS) that represent 
Level 1 automation. 

Parasuraman and Riley provided an excellent review of human factor issues in the automation of 
systems.(2) They define automation as work previously performed by a human that has 
transitioned to being performed by a machine. When enough time elapses, the work previously 
performed by a human tends to be forgotten, and the work is no longer thought of as automation. 
An increase in the processing power of computers has led to an increase in the speed of 
automation. In allocating system functions to humans and machines, functions performed more 
accurately, efficiently, reliably, or at a lower cost by machines are frequently assigned to the 
machine. This process of assigning to machines tasks best done by them sometimes fails to 
consider the role of the human in determining overall system performance and may lead to what 
Bainbridge describes as the irony of automation.(3) The less frequently a human is required to do 
a set of tasks, the more difficult doing those tasks may become. Automation often changes a 
person’s job from doing tasks to monitoring tasks and intervening in the event of automation 
errors. However, if automation prevents a person from practicing a task, the person may be less 
qualified to intervene and more likely to be out of the loop—thus making it more difficult for 
them to accurately identify when an error has occurred. 

Several studies have reported reductions in driving safety that result from increased 
automation.(4) For example, Stanton and Young found that participants reported less situational 
awareness when ACC was engaged.(5) Similarly, Strand et al. found that drivers who drove a 
simulated Level 2 vehicle that combined an automatic steering system with ACC were more 
likely to collide with a braking vehicle when the automation failed than drivers who drove with 
the ACC system alone.(6) The results suggest that driver assistance and driver automation 
systems can lead to reduced driver safety in unexpected emergency situations. 

Kovordányi, Ohlsson, and Alm proposed that reductions in driver performance following the 
introduction of automation may be a result of negative behavioral adaptation.(7) Negative 
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behavioral adaptation is an unintentional deterioration in behavior that occurs in response to a 
change in technology.(8) During conventional driving, the utility of one’s actions are processed 
by comparing the actual outcome of a response with the expected outcome to that response. If 
the actual outcome is worse than expected, then the behavior is adjusted to create a more 
acceptable outcome. If the actual outcome is better than expected, then the behavior can be 
adjusted to create less effort. This process is nonconscious and allows for automatic procedural 
learning. However, when an automated system compensates for faulty behavior, the actual 
outcome of the behavior will be better than expected. As a result, drivers may be more likely to 
either continue producing the faulty behavior or adjust behavior to become even more risky.(7) 
Thus, behavioral adaption may negate the benefits of ADAS and create a driver that is less able 
to produce correct behavior in situations when the system is not present. 

Nevertheless, it is unclear whether the reductions in safety found in studies assessing drivers’ 
responses to automation failure indicate negative behavioral adaptation or simply reflect the 
difficulty that drivers have in learning the boundary conditions of automated driving systems. 
Sullivan et al. note that when drivers use advanced driver automation systems they create and 
update mental models of the technology as they use it.(8) When drivers first begin interacting 
with the system, their mental models will be incomplete. The models will become more accurate 
as they gain experience using the system and encounter the boundary conditions of the 
technology. Studies reporting reduced ability to respond in emergencies (e.g., device failures) 
when using ADAS have typically used drivers that are unfamiliar with the technology.(4,5,6) As 
such, it may be that these reductions in performance are due to failure to fully understand 
automation rather than true behavioral adaptation. 

Weaver et al. found that participants driving a field research vehicle on an actual roadway 
displayed increased alertness and somewhat reduced mind wandering when driving with 
automated technology compared to when driving the same route manually.(9) This result is in 
stark contrast to previous work that found delayed responses when driving with automation in a 
simulated scenario. When driving on a simulated roadway, participants with an incomplete 
mental model may attempt to test the limits of the automation in order to learn more about the 
system, whereas drivers in the real world may proceed with extra caution until more about the 
automation is learned. Thus, an incomplete mental model of vehicle automation may exaggerate 
the negative effects of vehicle automation on driving performance when testing occurs in a 
driving simulator. 

Behavioral adaptation and a misunderstanding of the boundary conditions of vehicle automation 
can both result in reductions in driver performance during emergency situations that occur when 
drivers are still learning about the technology. However, different responses would be expected 
with increased use of the system. Behavioral adaptation is a largely automatic process that 
continues over time. Thus, reductions in performance that result from behavioral adaption would 
be expected to persist and even further degrade with increased experience using the system. 

In contrast, an incomplete mental model would only be expected to influence behavior during 
early use of the technology. As drivers gain experience with the system, particularly with the 
boundary conditions of the technology, their mental model of the system should become more 
accurate, and their driving ability should improve. Thus, understanding whether a reduction in 
performance in the presence of vehicle automation stems from negative behavioral adaptation or 
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from an incomplete mental model of the technology has important implications for the expected 
long-term effect of this technology on driver safety. Studying changes in performance as drivers 
gain experience with the technology, especially changes in responses to critical events, can help 
differentiate between the potential roles of behavioral adaptation and incomplete mental models 
on driving performance. 

Within the current study, the effect of varying levels of vehicle automation on driver 
performance over time was assessed. Participants gained experience with driver assistance 
systems across four sessions in the driving simulator. The specific driver assistance systems were 
manipulated between subjects and included CACC, LKA, a combination of CACC and LKA 
(CACC + LKA), and a control condition with no driving assistance features. Driver performance 
metrics, eye tracking, and physiological data were collected to assess how driver behavior 
changes as one adapts to automation. Unexpected critical events during both early and later 
exposures to the technology were used to assess whether vehicle automation leads to reductions 
in driver responses during emergencies and whether such changes are indicative of behavioral 
adaptation. Thus, the goal of this research was to assess the effect of longer-term adaptation to 
vehicle automation on the driver’s ability to monitor the driving system and drive the vehicle.
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CHAPTER 2. METHOD 

This section describes the participants, experimental design, equipment, and procedures used 
during data collection. 

PARTICIPANTS 

Forty-eight licensed drivers from the Washington, DC metro area participated in the study. All 
participants were over the age of 18 and had at least 20/40 visual acuity (with correction if 
needed). Each participant completed four drives. 

EXPERIMENTAL DESIGN 

The study employed a four (driver assistance system condition) by four (session number) 
research design. Driver assistance system type was manipulated between subjects. Participants 
drove either a conventional vehicle with no driver assistance system, a vehicle with LKA (a 
lateral control technology), a vehicle with CACC (a longitudinal control technology), or a 
vehicle with CACC + LKA (both lateral and longitudinal control technologies). Each participant 
drove in four driving sessions. Potential effects of participant gender and age (older or younger 
than 45) were also assessed. Changes in driving performance, eye-gaze patterns, and driver 
alertness were assessed as participants gained experience with the technology. Critical events 
occurred during the first and last experimental sessions. Participant responses to the critical 
events were thus assessed in a four (driver assistance system condition) by two (session number) 
design. 

EQUIPMENT 

The study took place in the Federal Highway Administration (FHWA) Highway Driving 
Simulator. The simulator consists of a compact sedan mounted on a six-degree-of-freedom 
motion base surrounded by a 200-degree portion of a cylinder with a radius of 8.7 ft. Directly in 
front of the driver, the design eye point of the simulator is 8.5 ft from the screen. Three 
projectors, each with a resolution of 4,096 by 2,400 pixels, project stimuli onto the screen. 

Lane-Keeping Assist 

Two of the four participant groups drove with LKA. The system assisted with lane keeping by 
using a seat vibration to alert participants when they got near the edge of their lane. If a 
participant’s vehicle crossed the lane line, the LKA system gently steered the vehicle back 
toward the center of the lane. The participant could override the LKA by applying force to the 
steering wheel. 

Cooperative Adaptive Cruise Control 

Two of the four participant groups drove with CACC. This system assisted with longitudinal 
control by keeping the vehicle speed at 40 mph except when approaching a slower moving 
vehicle. When the participant’s vehicle approached a slower moving vehicle, the CACC system 
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ensured that the participant’s vehicle maintained a 0.5-s following distance from the vehicle. 
Participants could override the system by either applying the brake or the accelerator. 

Sensors To Detect Physiological Responses 

Disposable silver-silver chloride electrodes were used to collect electrodermal activity (EDA) 
data, and a photoplethysmography (PPG) sensor was used to collect heart rate data via pulse 
recordings. Both sensors connected to a small wireless transmitter that was worn on the wrist of 
the participant’s nondominant hand. EDA and PPG signals were relayed to and processed by a 
commercially available physiological data acquisition system. 

PROCEDURE 

Upon arrival to their first session, participants were asked to read and sign an informed consent. 
An eye chart was then used to verify better than 20/40 vision, the minimum requirements for 
licensure in most States. Participants then received study instructions. For those who were 
driving with a driver assistance system, these instructions provided the participants information 
on how the system they would drive with functioned. After learning about the driver assistance 
system(s) they would drive with, participants in the LKA, CACC, and CACC + LKA conditions 
completed the Van Der Laan questionnaire. This nine-item questionnaire provides separate 
measures for usefulness and satisfaction with new in-vehicle technologies.(10) When administered 
before and after technology use, the measure provides an assessment of how perceptions of 
technology change with use. 

PPG and EDA sensors were attached to the participants, and the sensor functions were verified. 
Next, the eye tracker was calibrated to each participant. Finally, a practice drive was completed 
to allow the participant to become familiar with the simulated vehicle and the driver assistance 
system(s) they would use during the experiment. 

Participants then completed an experimental drive on the simulated route shown in figure 1. The 
simulated highway was a four-lane, undivided loop of 18.5 mi with a speed limit of 40 mph. 
Drivers in the CACC and CACC + LKA conditions were asked to keep the CACC engaged 
whenever they felt it was safe to do so. Participants started each drive in the right lane of the 
roadway. They were free to change lanes as desired throughout the drive. Light traffic was 
present on the roadway traveling at speeds between 35–45 mph. The traffic was relatively evenly 
dispersed along the length of the roadway. The traffic volume was programmed to be high 
enough to help invoke realism but not so high as to limit participant driving behavior. To provide 
some variety, participants traveled in one direction during their first and third sessions and the 
opposite direction during their second and fourth sessions. The direction of travel during the first 
session was counterbalanced. 
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Source: FHWA 

Figure 1. Illustration. Experimental route. 

At three points during the drive, moving figures were visible from the roadway. These figures 
included deer by the side of the road, construction workers, and men loading a barrel into the 
back of a truck. The figures were present at the side of the road during all four sessions. During 
the first and last drive, one of these moving figures became a critical event that required driver 
reaction. During the deer event, one of the deer positioned at the side of the road would dart 
across the road. During the barrel event, the barrel would roll down from the truck and across the 
roadway. Critical events occurred during the first and the fourth session, and each participant 
encountered each event only once. That is, those who encountered the deer during session 1 
would encounter the barrel in session 4 (or vice versa). The timing of the events was manipulated 
so that drivers who did not change their speed or direction of travel would be involved in a 
collision. 

Participants completed four sessions. No more than two sessions were completed in a single 
week, and each session was completed within 7 d of the previous session. Following their last 
experimental drive, participants completed the Van der Laan questionnaire a second time. 

DATA ANALYSIS 

For vehicle dynamics, eye tracking, critical event, and questionnaire data, a linear mixed-effects 
model and a generalized linear mixed model with logit link or log link were used accordingly, 
depending on the characteristics of response variables in the analysis. For nonbinary response 
variables, outlier detection was implemented by examining whether an observation in a cell of 
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the design was below the first quartile minus three times interquartile range, above the third 
quartile plus three times interquartile range, or resulted in large estimated deviation between 
subject average and the overall model average. Any detected outlier was excluded from the 
analysis. A significance level of 0.05 was adopted throughout the analysis. Each model started 
with day, condition, age, and gender factors, including the interaction between day and 
condition. Factors that did not contribute to the model were further excluded. Post-hoc analysis 
was conducted with Tukey correction as applicable. 

PHYSIOLOGICAL ANALYSIS 

Analysis of EDA data included the following steps. First, high-frequency noise was removed 
from EDA data using a 1-Hertz (Hz), low-pass filter. Then, each participant’s data file was 
inspected for motion artifacts, which were removed manually. Next, skin conductance responses 
(SCRs) for each participant were identified as instances in which the phasic signal rose to a 
threshold of at least 0.02 microsiemens and the amplitude of the rise was at least 10 percent of 
the maximum amplitude of all SCRs detected within that ACC condition during the same 
direction of travel for each participant. SCR frequency rates were then calculated as the number 
of SCRs that occurred over the period during which artifact-free EDA data were being collected. 
A Poisson distribution with a log-link function was specified when analyzing SCR frequency to 
account for differences in recording duration between participants. 

To assess PPG data, a high-pass filter of 9 Hz and a low-pass filter of 0.5 Hz were applied to 
PPG data offline to improve signal strength and reduce noise.(11) For each participant, peaks 
reflecting the maximum amplitude of blood volume during each pulse were identified and used 
to calculate average beats per minute within each session.
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CHAPTER 3. RESULTS 

Data analysis included an examination of how driving performance and gaze distribution 
changed over time as a function of condition and session. Driver response to the critical events 
that occurred during session 1 and session 4 was also evaluated. Finally, responses to the pre- 
and post-drive questionnaire were compared to assess whether participants’ attitudes about driver 
assistance systems changed after repeated exposure to the systems. 

DRIVING PERFORMANCE 

Driver performance metrics were used to assess how longitudinal and lateral control of the 
vehicle changed in each condition across the four sessions. 

Longitudinal Control 

Participants were instructed to follow the speed limit, which was 45 mph, and drive as they 
normally would. Speed was assessed as a function of session, condition, gender, and age. A main 
effect of gender was found, F-value or F(1,39) = 7.038, p-value (p) = 0.011. However, this effect 
was qualified by a significant gender-by-condition interaction, F(3,39) = 7.485, p < 0.001. In the 
control condition, males (mean [M] = 47.4 mph) drove significantly faster than females (M = 
43.4 mph). This difference in speed was not found in any of the conditions in which a driver 
assistance system was present (LKA: males = 45.6 mph, females = 46 mph, CACC: males = 45 
mph, females = 44.6 mph, CACC + LKA: males = 44.8 mph, females 44.7 mph). No other 
effects of speed were found. 

An assessment of speed variability revealed a main effect of session, F(3,132) = 9.115, p < 
0.001, as well as a session by condition interaction, F(9,132) = 2.116, p = 0.032. Figure 2 shows 
mean variances in speed as a function of session and condition. Whereas speed variability 
remained relatively stable across sessions for those in the control and LKA conditions, variability 
seemed to be reduced for those participants in the CACC and CACC + LKA conditions during 
sessions 2 and 3, when no critical events occurred. This observation was confirmed by post-hoc 
tests. The greater speed variability in the control condition relative to the CACC + LKA was 
significant for session 2 (p < 0.05) and marginally significant for session 3 (p = 0.05). Likewise, 
the greater speed variability for the LKA condition relative to the CACC condition was 
marginally significant during session 2 (p = 0.08) and significant during session 3 (p < 0.05). No 
other significant effects were found. 
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Source: FHWA 

Figure 2. Chart. Speed variability as a function of condition and session. Error bars 
represent standard errors. 

Lateral Control 

Lane deviation was assessed as a function of condition, session, age, and gender. Gender had a 
marginally significant effect on lane deviation, F (1,38) = 3.210, p = 0.082. The driving path of 
male participants (M = 1.75 ft) deviated from the center of the lane more than that of female 
participants (M = 1.51 ft). Condition also had a marginally significant effect on lane deviation, 
F(3,38) = 2.400, p = 0.081. As illustrated in figure 3, participants in conditions that included 
LKA tended to deviate from the center of the lane less than those who did not drive with a lateral 
driver assistance system. 

 
Source: FHWA 

Figure 3. Chart. Lane deviation as a function of condition. Error bars represent standard 
errors. 
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EYE GAZE 

Eye gaze was classified broadly as being directed either out the front windshield, at locations 
inside the vehicle, at the mirrors, or out the left or right windows. Participants spent the majority 
of their drives (87.8 percent) looking out the front windshield of the vehicle. The second most 
common gaze location (8.7 percent) was inside the vehicle. The remaining 3.5 percent of the 
drive was fairly evenly distributed between the mirrors and left and right windows. 

The specific portion of the drive spent looking out the windshield and mirror varied as a function 
of both condition and session. For gazes at the windshield, a main effect of session, chi squared 
or χ2(3) = 15912.289, p < 0.001; a main effect of condition, χ2(3) = 8.133, p = 0.043; and an 
interaction between session and conditions, χ2(9) = 26763.258, p < 0.001, were found. As 
illustrated in figure 4, all participants spent roughly equal amounts of time directing their gaze 
toward the front windshield during session 1. However, over time, the participants using CACC 
tended to direct more gazes toward the windshield than participants who did not have access to 
this technology. Post-hoc tests confirmed that no differences in gaze location were found during 
session 1. During session 2, participants in the CACC + LKA condition directed more gazes 
toward the windshield than participants in the control condition (p = 0.06). During session 3, 
participants in the CACC condition directed more gazes toward the windshield than participants 
in the control (p < 0.01) or LKA (p = 0.08) conditions, and participants in the CACC + LKA 
condition directed more gazes toward the windshield than participants in the control ( p < 0.01) 
or LKA (p = 0.05) conditions. During session 4, only the differences between the CACC and the 
control condition (p < 0.05) and the CACC + LKA and the control condition (p < 0.01) remained 
significant. 

 
Source: FHWA 

Figure 4. Chart. Proportion of gazes directed at front windshield as a function of condition 
and session number. 
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Participants in the LKA and control conditions spent less time looking out the front windshield 
than participants in the CACC and CACC + LKA conditions; instead, these participants spent 
this difference in time directing their gazes inside the vehicle. The proportion of the gazes 
directed toward locations inside the vehicle as a function of condition and session number is 
shown in figure 5. Main effects of session, χ2(3) = 19050.214, p < 0.001; condition, χ2(3) = 
13.956, p < 0.01; and the session-by-condition interaction, χ2(9) = 36963.301, p < 0.001, were all 
significant. The use of CACC appeared to have allowed participants to spend less time looking 
inside the vehicle to monitor their speed, and participants directed those extra gazes out the front 
windshield of the vehicle. 

  
Source FHWA 

Figure 5. Chart. Proportion of gazes directed toward the inside of the vehicle as a function 
of condition and session number. 

Automation causing potential narrowing of attention was assessed by examining the standard 
deviation of X and Y gaze coordinates out the front windshield. However, no effects reached 
significance. The results suggest that use of CACC increased participants’ opportunities to direct 
their gaze out the front windshield without narrowing their window of attention. 

CRITICAL EVENTS 

During both the first and last session, participants encountered a critical event that required a 
response to avoid a collision. During the deer event, a small group of deer stood near the right 
side of the road, approximately 12 mi into the drive. One of the deer bolted across the road when 
the participant’s vehicle approached. The barrel event occurred after participants had driven for 
approximately 10.5 mi. Men at a gas station located on the right side of the road surrounded a 
barrel on the bed of a truck. As the participant’s vehicle approached, the barrel rolled off the 
truck bed and across the road. In both events, participants had to respond to prevent a collision 
with the deer or barrel. The specific event that participants encountered was counterbalanced 
across sessions. Across both events, most participants were not able to avoid a collision—85.4 
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percent of participants collided with the barrel, and 81.2 percent struck the deer. A chi-squared 
test was used to confirm that event type did not impact crash rate, χ2(1) = 0.299, p = 0.585. 

Crash rates as a function of condition and session are displayed in table 1. Small reductions in 
crash rates were found in three of the four conditions in session 4 relative to session 1; however, 
this reduction was not statistically significant. 

Table 1. Crash rate during each session as a function of condition. 

Session Control LKA CACC CACC + LKA 
Session 1 91.7 percent 75.0 percent 91.7 percent 100 percent 
Session 4 75.0 percent 91.7 percent 75.0 percent 66.7 percent 

Participants could attempt to avoid the collision by applying the brake. As displayed in figure 6, 
participants in the LKA condition were less likely to apply the brake than those in the other three 
conditions, z-score or z = 2.173, p = 0.030. 

 
Source: FHWA 

Figure 6. Chart. Percentage of participants in each condition who applied the brakes 
during the critical event. 

For those who crashed during the critical event, collision speed served as a metric of crash 
severity. Session had a marginally significant effect on collision speed, χ2(1) = 3.00, p = 0.083. 
Collision speeds were higher during session 1 (M = 39.21 mph) than in session 4 (M = 38.91 
mph). 

The speed at which participants applied the brake, relative to the critical event, was also assessed 
as a function of condition, session, gender, and age. Brake response times were marginally 
affected by participant age, F(1,36) = 3.182, p = 0.083. Older participants’ braking responses 
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tended to occur closer to the critical event (M = 0.570 s) than younger participants’ braking 
responses (M = 0.677 s). No other effects reached significance. 

PHYSIOLOGICAL RESPONSE 

PPG data was collected for 43 participants. Heart rates were assessed as a function of condition, 
session, age, and gender; however, no significant differences in PPG rates were found. 

EDA responses were available for 39 participants. For EDA data, SCR frequency rates, instead 
of counts, were modeled to account for the difference between the valid time durations during 
which recordings occurred and the EDA dropouts. This was done by adding an offset term to a 
Poisson mixed-effects model with a known coefficient of one. SCR frequency rates were 
assessed as a function of session, condition, gender, and age. A main effect of condition was 
found, χ2(3) = 12.647, p = 0.005. Response frequency was also influenced by session, χ2(3) = 
160.4770, p < 0.001. The interaction between condition and session was also significant, χ2(9) = 
268.287, p < 0.001. SCR frequency rates across sessions as a function of condition are shown in 
figure 7. Although the specific frequency rates varied by condition, the pattern across sessions 
for all conditions in which a driver assistance system was in use followed similar patterns. SCR 
frequency increased with each session from session 1 to session 3 and then decreased during 
session 4. In the control condition, SCR frequency had similar rates across sessions 1 and 2, 
decreased during session 3, and then increased to its highest rate during session 4. 

 
Source: FHWA 

Figure 7. Chart. SCR frequency rate across sessions as a function of condition. Error bars 
represent standard errors. 

Gender also had an influence on EDA response frequency, χ2(1) = 10.519, p = 0.001. Males (M = 
1.668) experienced SCRs at a greater frequency than females (M = 1.127). 
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TRUST IN TECHNOLOGY 

Following their last session, participants were asked, “List any driver assistance systems within 
the vehicle that you drive most frequently.” Of the 48 participants that completed the 
questionnaire, 36 (75 percent) indicated that their vehicle was equipped with cruise control. 
Eight (16 percent) used a vehicle equipped with ACC, and seven (14 percent) had a lateral 
control assistance system. 

Participants who used driver assistance systems during their drive completed the Van der Laan 
questionnaire both before their first session and after their last session. Scores were compared to 
assess changes in trust in technology that occurred as a result of experiences with the systems. 
Scores ranged from +2 to -2, with positive scores indicating a positive view of the system and 
negative scores indicating a negative view. As shown in figure 8, trust levels in both CACC and 
LKA were similar and did not change significantly over the course of the four sessions. 
Participants appeared to have a fairly neutral opinion of the technologies they used during the 
experiment, and repeated use of the technology did not impact their opinions of it. 

 
Source: FHWA 

Figure 8. Chart. Trust ratings as a function of session and driver assistance technology.
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CHAPTER 4. DISCUSSION 

The goal of this experiment was to assess the effects of adaptation to driver assistance systems 
on drivers’ performance over time. Participants completed four experimental drives in a driving 
simulator over the course of approximately 2 w. During these drives, participants gained 
experience with different driver assistance systems. One group of participants gained experience 
with CACC, another with LKA, and another with both CACC and LKA; meanwhile, a final 
group that was not exposed to any driver assistance system served as a control group. Vehicle 
dynamic and eye-tracking data provided an assessment of how participants’ attention and driving 
performance changed over time. A critical event during both the first and last session of the 
study was used to examine how adaptation to driver assistance systems impacted participants’ 
ability to respond to unexpected emergencies. Physiological responses, along with pre- and post-
drive questionnaires, were used to assess participant arousal levels and changes in trust in 
technology over time. 

Driver assistance systems are marketed as convenience systems that are designed to make the 
driving task easier.(10) Nevertheless, there seems to be an expectation that this technology will 
also make driving safer, particularly as lower level driver assistance systems are replaced by 
higher level automated driving systems.(9,13) In the current study, the driver assistance systems 
were effective in aiding driving performance. Driving with CACC led to reduced speed 
variability for participants in both the CACC and CACC + LKA conditions during sessions in 
which the critical event did not occur. Similarly, driving with LKA, in both the LKA and CACC 
+ LKA conditions, led to reduced lane deviation across all sessions relative to those found in the 
CACC and control conditions. In both cases, the driver assistance system effectively elicited less 
variable driving behavior, which tends to be associated with safer driving.(14,15) 

Eye-tracking analysis was also suggestive of the potentially positive impact of driver assistance 
systems. Participants in the CACC and CACC + LKA condition spent more time looking out the 
front windshield and less time looking at the inside of the vehicle than participants in the LKA 
and control conditions. This change in gaze pattern only happened after the first session, when 
participants had become familiar with and adapted to the CACC technology. The results suggest 
that once drivers become comfortable with CACC controlling their speed, they are able to start 
relying on the technology and can spend less time monitoring speed and more time monitoring 
their environment. 

The results are similar to those of Mars, Franch, and Navarro, who assessed the influence of 
automatic lane control on gaze position when negotiating curves.(16) They found that participants 
who drove with automation were able to devote some of the attention they might have previously 
used for negotiating their hand movements during a curve to look for potential obstacles further 
down the roadway. As a result, participants who used the technology were better prepared to deal 
with unexpected hazards. It seems that, as drivers come to rely on driver assistance systems, they 
can redirect attentional resources previously devoted to basic aspects of the driving task to 
paying more attention to the forward roadway. 

In this study, when participants responded to critical events, collision speed, which serves as a 
metric for crash severity, tended to be lower in session 4 than in session 1, suggesting that 
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participants’ ability to respond to the critical event over time was not negatively affected by the 
use of driver assistance technology. Though not significant, crash frequency rates tended to 
display a similar pattern. Across the control, CACC, and CACC + LKA conditions, the 
percentage of participants who were involved in a collision during the critical event was lower 
during session 4 than session 1. The opposite numerical pattern was found for participants in the 
LKA condition. Further, participants in the LKA condition were less likely to apply the brake 
prior to the critical event than those in the other three conditions. The effect was found across 
both sessions. It is unclear why participants in this condition were less likely to brake and more 
likely to crash than those in the other three conditions. 

One complaint about driver assistance technology is that it can lead to overreliance, rendering 
drivers less prepared to deal with an emergency situation, should one occur. Indeed, multiple 
studies have found reductions in the speed at which drivers could respond to an emergency event 
when using driver assistance or vehicle automation systems.(4,5,6) Some researchers have 
attributed this reduction in performance to negative behavioral adaptation—i.e., the deterioration 
of driving skills due to overreliance on technology.(4,7) However, other researchers have noted 
that these findings could also be explained by faulty or incomplete mental models of in-vehicle 
technology.(8) Since past research has tended to be completed with drivers who were unfamiliar 
with the driver assistance or automated driving system they were using, such research has not 
been able to differentiate between these competing hypotheses. 

The current study introduced a critical event, both in the beginning of the study, when the driver 
was still gaining knowledge about the driver assistance systems, and again during session 4, 
when the driver had practiced using and had hopefully gained familiarity with the systems. If 
reductions in response to the critical event were due to negative behavioral adaptation, then 
crashes in response to the critical event should be more prevalent and severe in session 4 than in 
session 1. However, if reductions in response were due to an incomplete mental model, then 
crashes should be less frequent and severe during session 4 than in session 1. Unlike previous 
work on this topic, use of driver assistance technology in the current study did not result in a 
reduction in drivers’ responses to critical events (at least for those in the CACC and CACC + 
LKA conditions). As a result, it is difficult to differentiate between these two hypotheses. 
However, the results tend to suggest that extended use of the technology (at least over the four 
sessions completed in this study) did not reduce participants’ ability to respond during an 
emergency. Future work should continue to assess this research question using higher levels of 
vehicle automation and perhaps longer adaptation periods. 

Physiological responses were used to assess changes in arousal over time. Both PPG and EDA 
data were collected. No differences in PPG data were found between conditions. However, 
varying patterns of EDA responses were found. The SCR frequencies of participants using driver 
assistance systems tended to increase with each session from session 1 to session 3 and then 
decrease during the final session. This pattern was not found in the control group. Instead, SCRs 
were reduced in session 3 and then increased in session 4. It is possible that participants in the 
driver assistance systems tested the boundaries of that condition during session 1 only to 
encounter a critical event and then became more cautious in the next two sessions. However, any 
interpretations of EDA data must be taken with caution as several difficulties prevented a clear 
examination of these arousal measures. First, data collection took place during the COVID-19 
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pandemic. Due to safety restrictions during that time, the research team was able to collect 
physiological data from only 39 of the 48 participants.  

Further, data collection occurred via electrodes that were placed on each participant’s fingers and 
connected to a data acquisition system on the participant’s wrist. The device was worn on the 
participant’s nondominant hand. However, driving tends to be a two-handed activity; as a result, 
data loss was prevalent during the drive. Specifically, when processing the EDA data, 
researchers noted relatively frequent drops in data during the period when the critical event 
occurred. It seems likely that participants responded to the critical event with swift movements 
of their hands (e.g., tightly grabbing the steering wheel), and these movements were sufficient to 
disrupt physiological data collection. As a result, data from sessions 1 and 4 may be less reliable 
than data collected during sessions 2 and 3. Future research should examine mechanisms for 
physiological data collection that are not reliant on collecting data from the hands. 

Participants completed the Van der Laan questionnaire both before their first session and after 
their last session to assess changes in trust in technology that occurred as a result of experiences 
with each driver assistance system.(10) Participants’ opinions about the technology they used 
during the experiment were neither positive nor negative. Further, their levels of trust did not 
change over time. These results stand in contrast to previous work that has tended to see trust of 
in-vehicle technology increase with use.(17,18) It is possible that any increase in trust participants 
gained in the technology during the course of the experiment was eliminated by the critical event 
that occurred during session 4. Previous work has found that increased trust tends to be 
associated with safe use of the system over time. However, this trust can be reduced temporarily 
by safety-critical automation errors. (18) Since the majority of participants were involved in a 
collision just prior to completing the post-drive questionnaire, participants might not have 
viewed their most recent interaction with the technology as safe and thus might have reported 
reduced trust in the system. 

Overall, the results of the current study paint an optimistic view of driver assistance technology. 
Participants who used the technology did so in a way that benefited their driving performance 
and allowed them to direct more of their attention to the road ahead. Further, these benefits were 
not associated with the reductions in attention or impaired responses to emergency events that 
have sometimes been seen in previous research. Even after four driving sessions, participants in 
the current study remained fairly neutral in their opinions of the technology and tended to remain 
at higher levels of alertness during uneventful driving conditions. The results suggest that Level 
1 driver assistance systems have the potential to benefit driver safety even after drivers have 
adapted to the technology following repeated use. 
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