Vehicle Defect IMPACT Analysis 2022 Update 2017-2021 Data

David B. Brown

University of Alabama Center for Advanced Public Safety (CAPS) August 22, 2022

For more information on this subject from NHTSA and other sources, please see: <u>http://www.safehomealabama.gov/tag/defects-recalls/</u>

Table of Contents

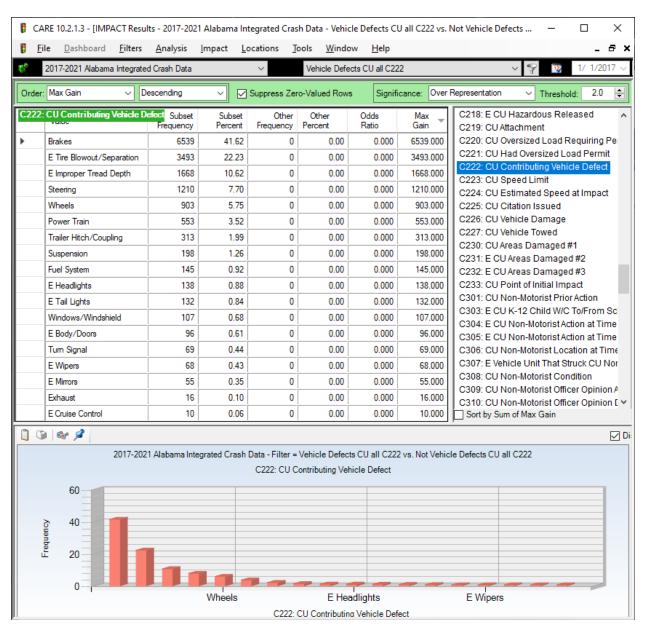
1.0 Introduction: All Unit types and All Vehicle Defect Types	3
1.1 C101 Causal Unit Type	3
1.2 Listing of All C222 CU Contributing Vehicle Defects	
1.3 Filters for the Analyses	6

2.0 Large Truck Analysis	8
2.1 C101 Causal Unit (CU) Type Analysis When Large Truck Involved	8
2.2 C222 CU Contributing Vehicle Defect by CU Unit Type Cross-tabulation	10
2.3 Large Truck Defect Crashes (LTDC) Compared Non-LTDC	11
2.3.1 C222 Causal Unit Vehicle Defect in LTDC vs Non-LTDC	11
2.3.2 C219 CU Attachment	12
2.4 C052 Number of Vehicles	13
2.5 C019 Most Harmful Event	14
2.6 C023 Manner of Crash	15
2.7 C011 Highway Classification and Speeds	16
2.8 Cross-tab of C224 Impact Speeds by C222 Defect Type for LTDC Vehicles	17
2.9 C025 Crash Severity	18
2.10 C208 CU Model Year	19

3.0 Passenger Vehicle Analysis	
3.1 C101 Causal Unit (CU) for Passenger Vehicles Involved	
3.2 C222 CU Contributing Vehicle Defect	21
3.3 C052 Number of Vehicles	
3.4 C019 Most Harmful Event	23
3.4 C019 Most Harmful Event (continued)	24
3.5 C023 Manner of Crash	25

3.6 C011 Highway Classifications	
3.7 C222 Vehicle Defects by C224 Impact Speed	27
3.8 C025 Crash Severity	
3.9 C222 Vehicle Defects by C025 Crash Severity	
3.10 C208 CU Model Year	
3.11 All Vehicles Tire Issues Further Analysis	
3.11.1 Severity of all Tire Defect Crashes (all vehicle types)	
3.11.2 C015 Primary Contributing Circumstances	
3.11.3 C052 Number of Vehicles (involved in these crashes)	
3.11.4 C224 Estimate Speed at Impact	
3.11.5 C011 Highway Classification	

4.0 Discussion on Potentia	l Inspection S	system for	Alabama	.38
----------------------------	----------------	------------	---------	-----


1.0 Introduction: All Unit types and All Vehicle Defect Types

1.1 C101 Causal Unit Type

The high level analysis of vehicles in general for vehicle defects showed a high correlation of the defect type and the vehicle type, which is expected since certain defects apply only to trucks and other specialized vehicles. The Causal Unit analysis given immediately below establishes that: (1) the most over-represented vehicles are heavy trucks (as we might expect), but (2) the highest frequency is in the Passenger Cars and SUVs, which are the most UNDER-represented.

CA	ARE 10.2.1.3 - [IMPACT Resu	ilts - 2017-	2021 Alaban	na Integrat	ed Crash Da	ta - Vehicle	Defects CU	all C222 AN	D Not Causal Un	iit (—		×
💀 Ei	ile <u>D</u> ashboard <u>F</u> ilters	<u>A</u> nalysi	s <u>I</u> mpact	<u>L</u> ocatio	ns <u>T</u> ools	<u>W</u> indow	<u>H</u> elp				-	8 ×
5 8	2017-2021 Alabama Integrate	ed Crash Da	ta	~	Vel	hicle Defects	CU all C222			~ 💡 🈨	1/ 1/20	17 ~
Order	: Max Gain 🗸 🗸)escending	~	Suppr	ess Zero-Val	ued Rows	Significa	ance: Over	Representation	✓ Threshold	l : 2.0	-
C101:	Causal Unit (CU) Type		Subset Frequency	Subset Percent	Other Frequency	Other Percent	Odds Ratio	Max Gain	C101: Causa	Il Unit (CU) Type	1	
•	E Tractor/Semi-Trailer		947	6.04	14105	1.92	3.156*	646.907				
	Pick-Up (Four-Tire Light True	ck)	3271	20.88	127144	17.27	1.209*	565.933				
	E Single-Unit Truck (2-Axle/	6-Tire)	303	1.93	7293	0.99	1.953*	147.837				
	E Single-Unit Truck (3 Axles	or Less)	181	1.16	2977	0.40	2.858*	117.662				
	E Truck (6 or 7) with Trailer		148	0.94	2037	0.28	3.415*	104.662				
	Motorcycle		201	1.28	5129	0.70	1.842*	91.877				
	Motor Home/Recreational V	ehicle	39	0.25	388	0.05	4.724*	30.745				
	E Other Heavy Truck (Cann	ot Classi	37	0.24	681	0.09	2.554*	22.511				
	E Tractor/Doubles		22	0.14	185	0.03	5.589*	18.064				
	E 4-Wheel Off Road ATV		30	0.19	563	0.08	2.505*	18.022				
	E Passenger Van		64	0.41	2238	0.30	1.344*	16.385				
	E Cargo Van (10000 lbs or L	ess)	136	0.87	5794	0.79	1.103	12.729				
	E Truck Tractor Only (Bobta	il)	18	0.11	393	0.05	2.153	9.639				
	E Low Speed Vehicle		11	0.07	146	0.02	3.541	7.894				
	E Other Passenger Vehicle		22	0.14	949	0.13	1.090	1.809				
	E Other Bus (Seats More tha	in 15)	16	0.10	1100	0.15	0.684	-7.403				
	Station Wagon		27	0.17	1818	0.25	0.698	-11.679				
	E Mini-van		316	2.02	15524	2.11	0.957	-14.283				
	E Sport Utility Vehicle (SUV)		2865	18.29	157384	21.37	0.856*	-483.441				
	Passenger Car		7012	44.76	358964	48.75	0.918*	-625.179	Sort by Sum	of Max Gain		
) (se y2								,			🗌 Di
					021 Alabama C101: Causa	-						
	60										-	
	호 40											
	AD 40 10 10 10 10 10 10 10 10 10 10 10 10 10											
	은 20											
	0				_							
		E Truc	k (6 or 7) wit	h Trailer		el Off Road /		Other Passe	enger Vehicle	Passenge	er Car	
<u> </u>					C101· C	ausal Unit (CU) Type					

The display above shows that Passenger Cars and SUVs are getting the highest number of vehicle defect crashes, not because they have more defects per vehicle, but because of their sheer number on the roadway. This is demonstrated by the under-representation of Passenger Cars and Sport Utility Vehicles (SUVs) when they are compared to the same vehicles without defect-caused crashes. Another very common passenger vehicle, that, in this case, is shown to be over-represented in vehicle-defect crashes is Pick Up trucks (second from the top).

1.2 Listing of <u>All C222 CU Contributing Vehicle Defects</u>

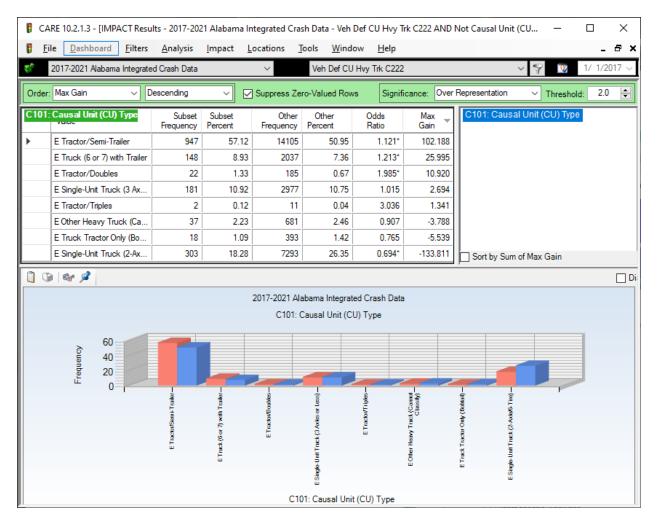
The above display is in Subset Frequency order. The Other Frequencies are all 0 indicating that there are no vehicle-defect caused crashes in the Other Frequency (i.e., the control) subset. Clearly, Brakes (6,539) and Tires (3,493 + 1,668 = 5,161) are the two highest frequency vehicle defects, and these will be given concentrated study below. This does not mean that other defects should be ignored. Each individual vehicle should be reviewed in terms of all of it potential defects to determine how to best maintain it so as to reduce these crash causes.

1.3 Filters for the Analyses

The results above led to the decision to separate the most common passenger vehicles from large trucks in Sections 2 and 3 below. Considering the passenger cars simultaneously with the large trucks would produce ambiguous results. To solve this problem, two separate runs were performed, where the subdivision is based on C101 - CU Unit Type. Specifically, the display below indicates how Large Trucks with vehicle defects were defined for this study. The details for this analysis is given in Section 2.

Filter Logic: Veh Def CU Hvy Trk C222	_		×
Logic Tree Logic Text			
□ All of the following are true (AND)			
One or more of the following are true (OR)			
2017-2021 Alabama Integrated Crash Data: CU Contributing Vehicle Defect is equal to Steering			
		1	
2017-2021 Alabama Integrated Crash Data: CU Contributing Vehicle Defect is equal to E Improper Tread	Depth		
	الدا من		
	lield		
 2017-2021 Alabama Integrated Crash Data: CU Contributing Vehicle Defect is equal to E Mirrors 2017-2021 Alabama Integrated Crash Data: CU Contributing Vehicle Defect is equal to Trailer Hitch/Courticular Statement (Courticular Statement) 	olina		
2017-2021 Alabama Integrated Crash Data: CU Contributing Vehicle Defect is equal to Trailer Hitch/Cou	piing		
2017-2021 Alabama Integrated Crash Data: CU Contributing Vehicle Defect is equal to Fower Hain 2017-2021 Alabama Integrated Crash Data: CU Contributing Vehicle Defect is equal to Fuel System			
2017-2021 Alabama Integrated Crash Data: CU Contributing Vehicle Defect is equal to E Headlights			
2017-2021 Alabama Integrated Crash Data: CU Contributing Vehicle Defect is equal to E Tail Lights			
2017-2021 Alabama Integrated Crash Data: CU Contributing Vehicle Defect is equal to Turn Signal			
2017-2021 Alabama Integrated Crash Data: CU Contributing Vehicle Defect is equal to Suspension			
2017-2021 Alabama Integrated Crash Data: CU Contributing Vehicle Defect is equal to E Cruise Control			
2017-2021 Alabama Integrated Crash Data: CU Contributing Vehicle Defect is equal to E Body/Doors			
One or more of the following are true (OR)			
	e/6-Tire)		
	tail)		
2017-2021 Alabama Integrated Crash Data: Causal Unit (CU) Type is equal to E Tractor/Triples			
2017-2021 Alabama Integrated Crash Data: Causal Unit (CU) Type is equal to E Other Heavy Truck (Car	not Clas	sify)	
1658 records selected by this filter.			.::

Similarly, the display below shows how the common "Passenger Cars" were defined for this study. This analysis is given in Section 3.


Logic Tree		Logic Text								
⊡. All of the fo	ollowing a	are true (AND)								
	_	the following are to	ue (OR)							
20	17-2021	Alabama Integrate	d Crash Dat	a: CU Contribu	ting Vehicle	Defect is equ	al to Brakes			
20	17-2021	Alabama Integrate	d Crash Dat	a: CU Contribu	ting Vehicle	Defect is equ	al to Steering			
20	17-2021	Alabama Integrate	d Crash Dat	a: CU Contribu	ting Vehicle	Defect is equ	al to E Tire Blow	vout/Separat	ion	
20	17-2021	Alabama Integrate	d Crash Dat	a: CU Contribu	ting Vehicle	Defect is equ	al to E Improper	Tread Dept	1	
20	17-2021	Alabama Integrate	d Crash Dat	a: CU Contribu	ting Vehicle	Defect is equ	al to Wheels			
20	17-2021	Alabama Integrate	d Crash Dat	a: CU Contribu	ting Vehicle	Defect is equ	al to E Wipers			
20)17-2021	Alabama Integrate	d Crash Dat	a: CU Contribu	ting Vehicle	Defect is equ	al to Windows/	Windshield		
20	17-2021	Alabama Integrate	d Crash Dat	a: CU Contribu	rting Vehicle	Defect is equ	al to E Mirrors			
20)17-2021	Alabama Integrate	d Crash Dat	a: CU Contribu	ting Vehicle	Defect is equ	al to Trailer Hitc	h/Coupling		
20)17-2021	Alabama Integrate	d Crash Dat	a: CU Contribu	ting Vehicle	Defect is equ	al to Power Trai	n		
20)17-2021	Alabama Integrate	d Crash Dat	a: CU Contribu	ting Vehicle	Defect is equ	al to Fuel Syster	m		
20)17-2021	Alabama Integrate	d Crash Dat	a: CU Contribu	iting Vehicle	Defect is equ	al to Exhaust			
20)17-2021	Alabama Integrate	d Crash Dat	a: CU Contribu	iting Vehicle	Defect is equ	al to E Headligh	its		
20)17-2021	Alabama Integrate	d Crash Dat	a: CU Contribu	ting Vehicle	Defect is equ	al to E Tail Lighi	ts		
20)17-2021	Alabama Integrate	d Crash Dat	a: CU Contribu	rting Vehicle	Defect is equ	al to Turn Signa	i		
20)17-2021	Alabama Integrate	d Crash Dat	a: CU Contribu	rting Vehicle	Defect is equ	al to Suspensior	n		
20)17-2021	Alabama Integrate	d Crash Dat	a: CU Contribu	rting Vehicle	Defect is equ	al to E Cruise Co	ontrol		
		Alabama Integrate		a: CU Contribu	rting Vehicle	Defect is equ	al to E Body/Do	oors		
🖃 One or	r more of	the following are t	ue (OR)							
20)17-2021	Alabama Integrate	d Crash Dat	a: Causal Unit	(CU) Type is	s equal to Pas	senger Car			
20	17-2021	Alabama Integrate	d Crash Dat	a: Causal Unit	(CU) Type is	s equal to Pick	-Up (Four-Tire L	.ight Truck)		
		Alabama Integrate					-			
		Alabama Integrate					-	le (SUV)		
		Alabama Integrate								
20)17-2021	Alabama Integrate	d Crash Dat	a: Causal Unit	(CU) Type i	s equal to E P	assenger Van			

The goal of both analyses was to determine the other attributes given on the crash reports that are correlated with vehicle defects. These are given in the Table of Contents for Sections 2 and 3 above. Each of the analyses will start out with a summary of the Causal Unit (CU) vehicle defects themselves (C222 CU Contributing Vehicle Defect). This is followed by IMPACT analyses on a number of attributes that were considered to be relevant.

2.0 Large Truck Analysis

2.1 C101 Causal Unit (CU) Type Analysis When Large Truck Involved

This comparison is between vehicles with defects against the same type units without defects, restricted to crashes that involved the respective large trucks (on both sides of the comparison). Most of the two-vehicle crashes involve a passenger car, since truck-truck crashes are relatively rare. The following display indicates the vehicle type for each defective vehicle type that <u>caused</u> the crashes. The assumption is that the recording officer would not indicate a vehicle defect for a vehicle if that vehicle did not cause the crash.

The output above is ordered by Max Gain, which considers both the number of crashes in which the unit caused (the first numerical column) and the over-representation (as measured by the Odds Ratio). The Max Gain is the number of crashes that would be eliminated if there was some countermeasure implemented that could cause its Subset Percent to be the same as the control (Other Percent). For example, in the first item list, which has a causal frequency of 947 crashes,

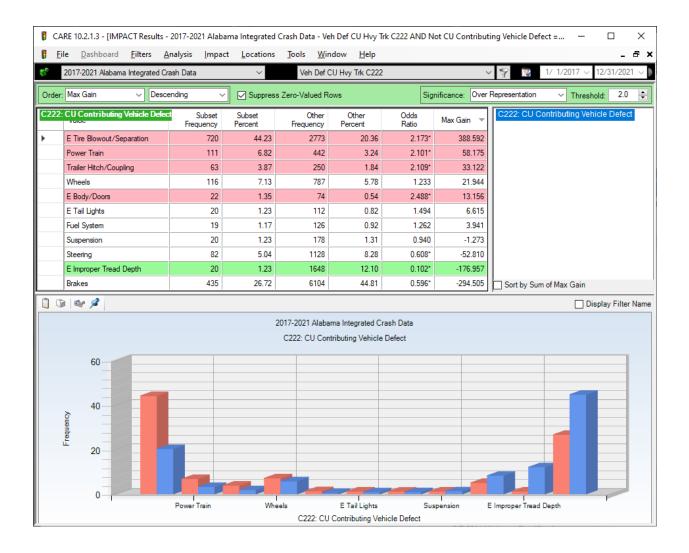
102 of these could be eliminated if the effect of vehicle defects were eliminated (making the value in the Subset Percent list to be 50.95). This list enables motor-carrier professionals to determine which vehicle types need the greatest emphasis when it comes to reducing their vehicle defects.

We will continue with the IMPACT results that had the highest total Max Gains, and also those with the most practical significance.

2.2 C222 CU Contributing Vehicle Defect by CU Unit Type Cross-tabulation

The cross-tabulation below shows what defects this analysis is considering; and it answers the question of: in general, what vehicle defects are included in the analysis given above. This is a cross-tabulation of C101 (Vehicle Type) by C222 (Vehicle Defect) for the large truck study.

CARE 10.2.1.3	- [Crosstab Results	- 2017-2021 Alabar	na Integrated Crasl	n Data - Filter = Veh	Def CU Hvy Trk C2	22]			- 0	X
🚦 <u>F</u> ile <u>D</u> ashb	ooard <u>F</u> ilters <u>A</u>	<u>A</u> nalysis <u>C</u> rosstał	<u>L</u> ocations <u>T</u>	ools <u>W</u> indow	<u>H</u> elp				_ (8
2017-2021	Alabama Integrated C	irash Data	\sim	Veh Def CU Hvy Trk	C222	~	💡 🍸 1/ 1	/2017 ~ 12/31/20	21 🗸 🔋 🕞	
Suppress Zero Va	lues: Rows and Colu	umns 🗸 Select	Cells: 🔳 🗸 🌀	9		Column: Cau	usal Unit (CU) Type	; Row: CU Contributi	ng Vehicle Defect	R
	E Single-Unit Truck (2-Axle/6-Ti	E Single-Unit Truck (3 Axles or	E Truck (6 or 7) with Trailer	E Truck Tractor Only (Bobtail)	E Tractor/Semi- Trailer	E Tractor/Doubles	E Tractor/Triples	E Other Heavy Truck (Cannot Cla	TOTAL	
Brakes	108	71	21	5	210	3	1	16	435	
Steering	30	7	4	2	36	0	0	3	82]
E Tire Blowout/Separatio	79	68	46	5	503	14	1	4	720	
E Improper Tread Depth	6	1	3	0	9	0	0	1	20	
Wheels	21	8	18	1	66	0	0	2	116	
E Wipers	1	0	0	0	1	0	0	0	2]
Windows/Windshi eld	2	1	0	0	2	0	0	0	5	
E Mirrors	3	0	1	0	1	1	0	0	6	
Trailer Hitch/Coupling	5	0	26	0	27	3	0	2	63	
Power Train	28	16	6	3	57	1	0	0	111	
Fuel System	5	1	2	1	10	0	0	0	19	
Exhaust	0	1	0	0	1	0	0	0	2	
E Headlights	2	0	1	1	1	0	0	0	5	
E Tail Lights	2	0	13	0	2	0	0	3	20	
Turn Signal	1	0	2	0	3	0	0	3	9	
Suspension	2	4	3	0	11	0	0	0	20	
E Cruise Control	0	0	0	0	1	0	0	0	1	
E Body/Doors	8	3	2	0	6	0	0	3	22	
TOTAL	303	181	148	18	947	22	2	37	1658	1

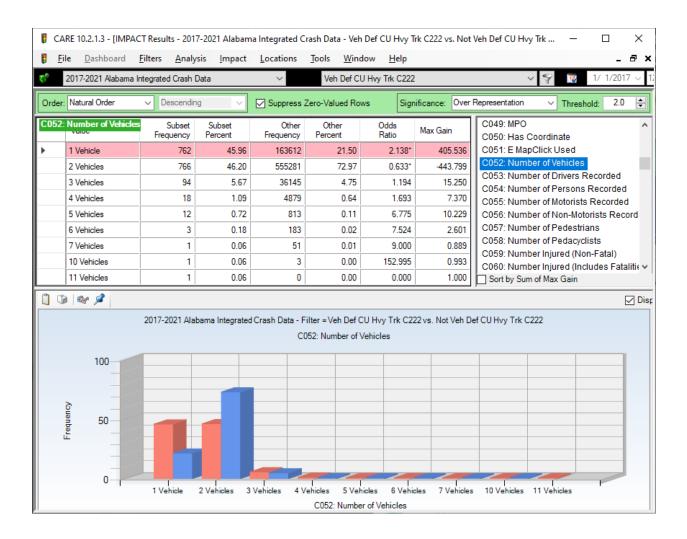

For some examples, brakes are more of a problem with both types of single-unit trucks than with other truck types, with the exception of Tractor/Semi Trailer, which has almost half of the Brakes total frequency.

2.3 Large Truck Defect Crashes (LTDC) Compared Non-LTDC

The displays that follow compare Large Truck Defect Crashes (LTDC) against all crashes that were not LTDC independent of their vehicle type or whether defects were involved in the crash (henceforth called Non-LTFC).

2.3.1 C222 Causal Unit Vehicle Defect in LTDC vs Non-LTDC

The display below gives the distribution of the vehicle defects that occurred in the vehicles given in the defects analysis in Section 2.1. The table indicates that Tire Blowout/Separation is the highest frequency (720), followed by Brakes (425, under-represented), Wheels (116). and Power Train (111). following. Apparently Improper Tread Depth is not as large a problem for large trucks as it is for passenger cars. We expect this is because of the continual inspections given to large trucks by FMCSA and the ALEA Motor Carrier unit.

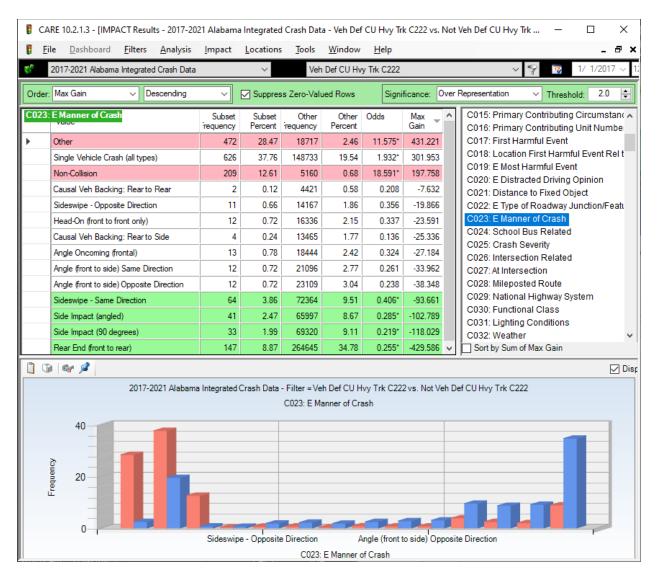

2.3.2 C219 CU Attachment

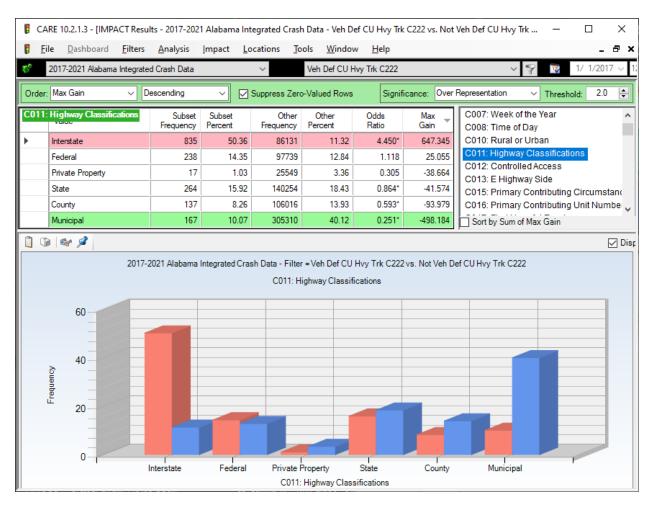
R C/	ARE 10.2.1.3 - [IMPACT Results - 2	017-2021 Alabar	na Integrated C	rach Data - Veh (of CIL Hay Tels C	222 vs. Not Vah		C2221 — 🗆 🗙
-		alysis Impact	-	Tools Windo		222 VS. NOL VEN	T DEI CO HVy IIK	_ 7
v <u>-</u>	2017-2021 Alabama Integrated Cra	2 2 1	~		Hvy Trk C222		~ 5	? 😗 1/ 1/2017 🗸 12/31/2021 🗸
Order	: Max Gain V Descer	nding v	Suppress	Zero-Valued Row	s	Sig	nificance: Over	Representation V Threshold: 2.0
C219	CUAttachment	Subset	Subset	Other	Other Percent	Odds Batio	Max Gain 👻	C212: CU License Tag State
•	E Other Semi Trailer	Frequency 729	43.97	Frequency 10555	1.39	31.701*	706.004	C213: CU Vehicle Usage C214: E CU Emergency Status
,	E Large Utility (2+ Axles)	128	7.72	5337	0.70	11.008*	116.372	C215: E CU Placard Required
	E Log Trailer	120	6.03	1096	0.14	41.878*	97.612	C216: E CU Placard Status
	Tanker	53	3.20	607	0.08	40.076*	51.678	C217: CU Hazardous Cargo
	Other	51	3.08	1287	0.00	18,188*	48,196	C218: E CU Hazardous Released C219: CU Attachment
	Double/Triple Trailer	29	1.75	379	0.17	35.120*	28.174	C220: CU Oversized Load Requiring Pe
	Mobile Home	23	1.73	820	0.05	12.314*	20.213	C221: CU Had Oversized Load Permit
	Towed Vehicle	22	1.33	569	0.11	12.314	19.760	C222: CU Contributing Vehicle Defect
		14	0.84	3921	0.07	1.639	5.457	C223: CU Speed Limit
	E Small Utility (1 Axle) Pole Trailer	5		3321	0.52		4,784	C224: CU Estimated Speed at Impact C225: CU Citation Issued
	E Steerable Front Axle		0.30	99		23.181	4.784	C226: CU Vehicle Damage
		2	0.12		0.00			C227: CU Vehicle Towed
	Camper Trailer	3	0.18	483	0.06	2.851	1.948	C230: CU Areas Damaged #1
	Boat Trailer	1	0.06	630	0.08	0.729	-0.373	C231: E CU Areas Damaged #2
	Not Applicable	11	0.66	16342	2.15	0.309	-24.605	C232: E CU Areas Damaged #3 C233: CU Point of Initial Impact
	Unknown	12	0.72	48268	6.34	0.114	-93.162	C201: OLI Non-Motoriet Prior Action
	None	477	28.77	639130	83.99	0.343*	-915.482	Sort by Sum of Max Gain
00	a lay 🖉							🗹 Display Filter Name
	2	017-2021 Alabam	a Integrated Cra		/eh Def CU Hvy T	rk C222 vs. Not	Veh Def CU Hvy	Trk C222
				C219: (CU Attachment			
	100							
	、 — — — — — — — — — — — — — — — — — — —							
	50							
	50 50							
	L _							
	0							
		Ot	her		e Trailer		Semi Trailer*	Unknown
				0	219: CU Attachme	ent		

The CU Attachment display above tends to indicate the causal vehicle use. For the Subset Frequencies, the causal vehicle would, except in rare cases, have the vehicle defect. The above comparison is Large Trucks with Defects Crashes (LTDC) against both large trucks without defects and all other vehicle types whether they had defects or not (Non-LTDC). As an example, Log Trailers (third attachment listed) had 6.03% of the LTDC crashes, but only 0.14% of all of the other vehicle crashes (Non-LTDC), creating an extremely large odds ratio (41.878). The Max Gain of 97.612 crashes represents the number that could be reduced if the over-representation was eliminated (i.e., the Odds Ratio somehow was forced to be 1; reducing the 6.03% to its expected value of 0.14%.

2.4 C052 Number of Vehicles

Single vehicle crashes are over-represented, in the Large Truck Defect Crashes (LTDCs) as are all multi-vehicle crashes with three or more vehicles. Two-vehicle crashes are under-represented with 0.633 of the proportion that occurs in Non-LTDCs. The Odds Ratio indicates that single vehicle crashes occur over twice (2.138) their expected proportion. These results are quite similar to those for passenger cars (Section 3.3).


2.5 C019 Most Harmful Event

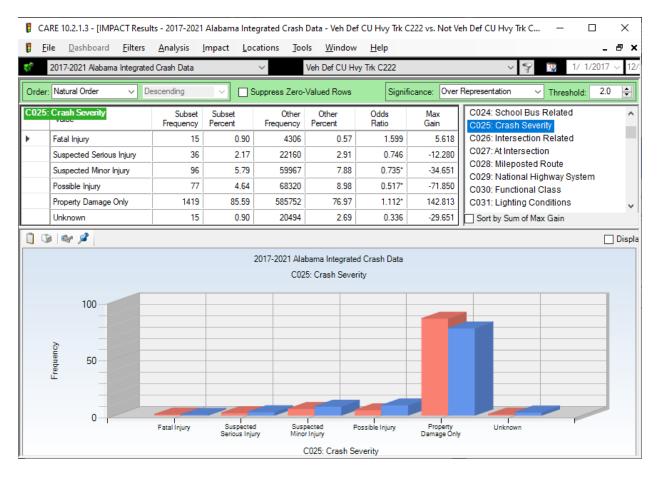

e	2017-2021 Alabama Integrated Crash Data		\sim	Veh Def	CU Hvy Tr	« C222		✓ ♥ 1/ 1/2017	$l \sim$
Order:	Max Gain v Descending	⊻ ⊵s	uppress Ze	ero-Valued I	Rows	Significa	nce: Over	Representation V Threshold: 2.0	* *
C019:	E Most Harmful Event	Subset requency	Subset Percent	Other requency	Other Percent	Odds Ratio	Max Gain	C019: E Most Harmful Event	
•	Collision with Other Non-Fixed Object	301	19.00	5948	0.82	23.197*	288.024		
	Fire/Explosion	167	10.54	1916	0.26	39.954*	162.820		
	Overtum/Rollover	193	12.18	21782	3.00	4.062*	145.482		
	Vehicle Defect/Component Failure	141	8.90	645	0.09	100.206*	139.593		
	Collision with Guardrail Face	53	3.35	5505	0.76	4.413*	40.991		
	Cargo/Equipment Loss or Shift	32	2.02	607	0.08	24.166*	30.676		
	Other Non-Collision	25	1.58	966	0.13	11.863*	22.893		
	Collision with Cable Barrier	31	1.96	3730	0.51	3.810*	22.863	1	
	Collision with Bridge Abutment/Rail	26	1.64	2048	0.28	5.819*	21.532	1	
	Collision with Concrete Barrier	33	2.08	6211	0.86	2.435*	19.450	1	
	Thrown or Falling Object	14	0.88	428	0.06	14.994	13.066		
	Jackknife	12	0.76	353	0.05	15.583	11.230		
	Collision with Falling/Shifting Cargo	12	0.76	1480	0.20	3.717	8.771		
	Collision with Guardrail End	12	0.76	1799	0.25	3.058	8.075		
	Collision with Ditch	43	2.71	17711	2.44	1.113	4.363		
	Collision with Embankment	12	0.76	3643	0.50	1.510	4.053		
	Collision with Other Fixed Object	16	1.01	7296	1.00	1.005	0.083		
	Ran Off Road Right	12	0.76	7684	1.06	0.716	-4.763		
	Collision with Utility Pole	14	0.88	10284	1.42	0.624	-8.435		
	Collision with Tree	44	2.78	24160	3.33	0.835	-8.706		
	Collision with Vehicle in (or from) Other Road	14	0.88	17048	2.35	0.376	-23.191		
	Collision with Parked Motor Vehicle	33	2.08	35509	4.89	0.426*	-44.465		
	Collision with Vehicle in Traffic	344	21.72	530569	73.07	0.297*	-813.462	Sort by Sum of Max Gain	
0) 🎯 🖉							, [_ D
		2	017-2021 A	Jabama Inte	egrated Cra	sh Data			
			C019): E Most Ha	armful Even	t			
	80								
	≥ 60								
	60 40								
	20								
							-		
	Collision with Guard	frail Face		llision with crete Barrier		Collision wi	th Ditch	Collision with Tree	
			0.011	C019: E Mo	ost Harmful	Event			

The display above was trimmed to exclude all events that had less than ten occurrences. Red in the tabular background portion of the output indicates that that the Harmful Event had an over-representation for LTDCs of at least twice its expectation (odds ratio > 2) when compared to crashes for that harmful event that were Non-LTDC. Green in the background indicate an under-representation of 0.500 or less. Clearly there are many Most Harmful Events whose probabilities of occurrence are greatly increased by vehicle defects.

2.6 C023 Manner of Crash

For two-vehicle crashes, this gives an idea of how the two vehicles came together. But note that a large plurality of crashes (37.76%) were single vehicle, much higher than the 19.54 expected compared to the Non-LTDC crashes. The same over-representation of LTDCs holds for the Non-Collision category. An example of Non-Collision might be where a defective tire caused a vehicle to run off the road and the incident was reported even though no collision with another vehicle or other obstacle resulted.

2.7 C011 Highway Classification and Speeds


All other things being equal, it is expected that each Highway Classification will have the same proportion of LTDC crashes as the defective vehicle-miles traveled on it over the course of the study. In this case, Interstates probably have over twice the traffic of vehicle-miles (in this case by large trucks) that might have vehicle defects. So the over-representation on Interstate highways is reasonable. Also, tire blowouts tend to occur at higher speeds, which would favor Federal and State routes over County and Municipal. Note the speeds of blowouts shown in the following cross-tabulation of impact speeds by vehicle defect.

CARE 10.2.1.3 - [Cro			-		U Hvy Trk C222]			-				
Eile Dashboard						6	1/ 1/2017	✓ 12/31/2021	د ہے _ ● ① ﴾ ¶]			
Suppress Zero Values:	Rows and Columns	✓ Select Cells:	<u>∎</u> • 26 💡		Colu	mn: CU Estimated S	peed at Impact ; Row	r: CU Contributing Ve	ehicle Defect 🛛 🚱			
	31 to 35 MPH	36 to 40 MPH	41 to 45 MPH	46 to 50 MPH	51 to 55 MPH	56 to 60 MPH	61 to 65 MPH	66 to 70 MPH	71 to 75 MPH			
Brakes	16	17	45	17	30	15	30	18	0			
Steering	4	4	12	4	11	6	9	11	0			
E Tire Blowout/Separation	4	5	21	30	59	72	218	212	10			
E Improper Tread Depth	0	0	1	2	4	3	0	2	0			
Wheels	1	5	13	6	16	7	14	17	0			
E Wipers	0	0	0	0	0	0	0	0	0			
Windows/Windshiel d	0	0	0	3	0	0	1	0	0			
E Mirrors	0	0	0	1	1	0	0	0	0			
Trailer Hitch/Coupling	3	2	4	9	2	1	2	5	0			
Power Train	4	6	5	3	12	7	10	29	0			
Fuel System	0	0	0	0	0	4	2	2	0			
Exhaust	0	0	0	0	1	0	0	0	0			
E Headlights	0	0	2	1	1	0	0	0	0			
E Tail Lights	1	1	1	0	1	0	1	0	0			
Turn Signal	0	0	0	0	1	0	0	0	0			
Suspension	0	0	0	0	6	0	2	0	1			
E Cruise Control	0	0	0	0	0	0	1	0	0			
E Body/Doors	0	0	1	0	3	0	1	3	0			
TOTAL	33	40	105	76	148	115	291	299	11			
<									3			

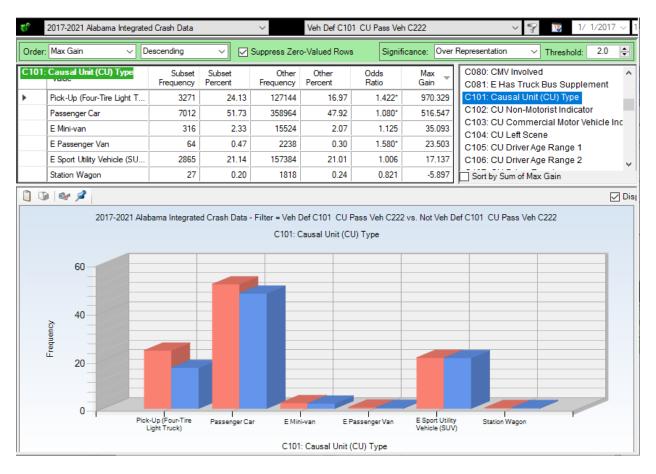
2.8 Cross-tab of C224 Impact Speeds by C222 Defect Type for LTDC Vehicles

Tires blow out more frequently at the higher speeds, since this puts additional stress on tires. Brakes and Steering tend to go out at any speed, since they are more evenly distributed across the impact speed range.

2.9 C025 Crash Severity

Crashes involving large trucks that were caused by vehicle defects have a larger proportion of fatal crashes (0.90% for LTDCs as opposed to 0.57 for all other vehicle crashes). No definitive conclusions can be drawn, however, with such a small sample (15 fatal crashes). The other three injury classifications are under-represented, and PDO crashes are significantly over-represented. It is possible that in many cases drivers can sense when there is a vehicle defect, and they slow down or stop to address the problem. Even if they only reduce speed in anticipation of a potential problem, this can dramatically lower the severity of the crash or chances of a fatality. Other studies have shown that the probability of a fatality is approximately cut in half for every 10 MPH reduction in the impact speed.

2.10 C208 CU Model Year


🚦 CA	RE 10.2.1.3 - [IMPACT F	Results - 2017-2021	Alabama Inte	grated Crash	Data - Veh Def	CU Hvy Trk C	222 AND Not	CU Model Year = 12 🗆 🗙
🔋 Fi	le Dashboard Filt	ters Analysis	mpact Loc	ations Too	ls Window	Help		_ & ×
6	2017-2021 Alabama Inte	grated Crash Data		\sim	Veh Def CU Hv	y Trk C222		✓ ♥ 1/ 1/2017 ∨ 12/
Order:	Max Gain 🗸 🗸	Descending	∽ ⊽s	uppress Zero-'	Valued Rows	Signifi	icance: Over	Representation V Threshold: 2.0
C208:	CU Model Year	Subset Frequency	Subset Percent	Other Frequency	Other Percent	Odds Ratio	Max Gain	C208: CU Model Year
•	1997	28	1.94	8926	1.31	1.489	9.189	
	1998	46	3.19	10477	1.53	2.083*	23.921	
	1999	49	3.40	14173	2.07	1.641*	19.132	
	2000	63	4.38	18163	2.66	1.646*	24.723	
	2001	38	2.64	19528	2.86	0.923	-3.153	
	2002	28	1.94	23165	3.39	0.574*	-20.818	
	2003	48	3.33	27822	4.07	0.819	-10.632	
	2004	43	2.99	31628	4.63	0.645*	-23.653	1
	2005	72	5.00	34317	5.02	0.996	-0.319	
	2006	76	5.28	36855	5.39	0.979	-1.668	1
	2007	123	8.54	40137	5.87	1.454*	38.416	
	2008	30	2.08	35252	5.16	0.404*	-44.290	
	2009	29	2.01	23076	3.38	0.596*	-19.630	
	2010	15	1.04	27291	3.99	0.261	-42.513	
	2011	37	2.57	30570	4.47	0.574*	-27.423	
	2012	67	4.65	34295	5.02	0.927	-5.273	
	2013	55	3.82	37041	5.42	0.705*	-23.060	
	2014	81	5.63	37200	5.44	1.033	2.605	
	2015	103	7.15	40131	5.87	1.218	18.428	
	2016	117	8.13	37577	5.50	1.477*	37.811	
	2017	78	5.42	33373	4.88	1.109	7.670	
	2018	89	6.18	22790	3.34	1.853*	40.973	
	2019	68	4.72	15857	2.32	2.035*	34.583	
	2020	44	3.06	8805	1.29	2.371*	25.444	
	2021	13	0.90	3401	0.50	1.814	5.833	Sort by Sum of Max Gain
0) 🞯 🖉							Displa
			2	2017-2021 Alal	oama Integrate	d Crash Data		
				C208	3: CU Model Ye	ar		
	10							
	è –							
	Suanhar	_				_		
6								
		5 D T 1						
	0							
		2001		2006		2011		2016 2021
					C208: CU Mo	del Year		

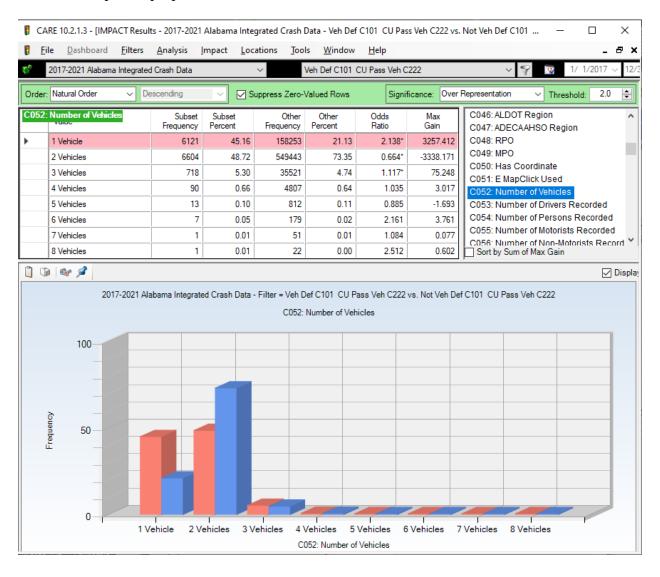
The age of the vehicle would definitely impact its chances for its containing defective components. The model years begin to be significantly over-represented in 1998, and this continues through 2000, after which they generally become under-represented up until 2016. From that model year and above there seems to be more vehicle defect crashes than would be expected from a comparison with the Non-LTDC subset.

3.0 Passenger Vehicle Analysis

3.1 C101 Causal Unit (CU) for Passenger Vehicles Involved

The filter used to perform this study required that a passenger vehicle under consideration in the Subset Frequency list was the Causal Unit. Large trucks were not excluded from consideration in the control group, but unlike the analysis above, there was no requirement for the presence of a large truck in the crashes being considered in the Subset. See the Introduction (Section 1.0) above for a formal definition of the particular vehicle types that had to be involved to qualify for these analyses. Note that the Display Filter Name will be turned on for all IMPACT analyses that are not pruned. Pruning is made obvious when all of the Cxxx attributes except the particular one selected appear in the attribute choice list (column to the extreme right of the display).

As is true of most of the IMPACT analyses, the above display is listed out in order of Max Gain. While pick-up trucks have the highest Max Gain, Passenger Cars have over twice the frequency. Despite their over-representation, Pick-ups account for less than a quarter (24.13%) of the LTDC crashes. The combination of pick-ups and passenger cars adds up to over 10,000 crashes (about 75%), and most of the rest are Sport Utility Vehicles (SUV).


3.2 C222 CU Contributing Vehicle Defect

Per-vehicle-type defect analyses are easily obtainable by a cross-tabulation of C101 by C222. The following is the example for passenger vehicles and vehicle defects. It is interesting that some cells with only one crash are still higher in proportion than the summary value, and thus have a red background. It is clear that brakes and the two tire defects produce the largest numbers. We will see below that tire problems eclipse the braking issues when it comes to causing fatalities.

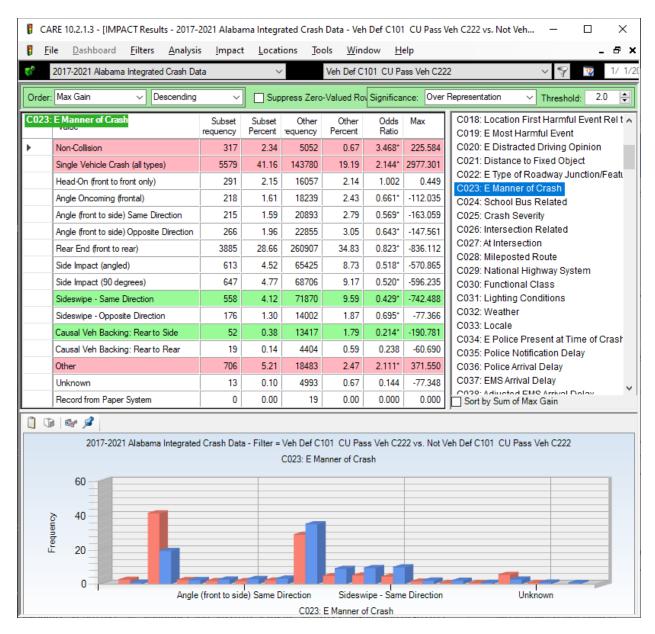
<u>File D</u> ashb	oard <u>F</u> ilters <u>/</u>	<u>A</u> nalysis <u>C</u> rossta	b <u>L</u> ocations <u>T</u>	ools <u>W</u> indow	<u>H</u> elp		- 5
2017-2021 /	Nabama Integrated C	irash Data	~	Veh Def C101 CU F	Pass Veh C222	~	P 1/
Suppress Zero Val	ues: Rows and Col	umns 🗸 Select	Cells: 🔳 🛛 🛞	Column	: Causal Unit (CU)	Type ; Row: CU Contri	ibuting Vehicle Defect
	Passenger Car	Station Wagon	Pick-Up (Four- Tire Light Truck)	E Sport Utility Vehicle (SUV)	E Mini-van	E Passenger Van	TOTAL
Brakes	3226	11	1248	1206	180	20	5891
	54.76%	0.19%	21.18%	20.47%	3.06%	0.34%	43.46%
Steering	602	2	254	214	25	5	1102
	54.63%	0.18%	23.05%	19.42%	2.27%	0.45%	8.13%
E Tire owout/Separatio	1332	5	640	608	65	20	2670
· ·	49.89%	0.19%	23.97%	22.77%	2.43%	0.75%	19.70%
Improper Tread	907	5	315	365	12	4	1608
Depth	56.41%	0.31%	19.59%	22.70%	0.75%	0.25%	11.86%
Wheels	344	2	243	158	9	2	758
	45.38%	0.26%	32.06%	20.84%	1.19%	0.26%	5.59%
E Wipers	32	0	15	16	1	1	65
	49.23%	0.00%	23.08%	24.62%	1.54%	1.54%	0.48%
indows/Windshi eld	50	0	27	21	2	1	101
eid	49.50%	0.00%	26.73%	20.79%	1.98%	0.99%	0.75%
E Mirrors	25	0	13	8	1	0	47
	53.19%	0.00%	27.66%	17.02%	2.13%	0.00%	0.35%
Trailer Hitch/Coupling	11	0	182	42	1	3	239
men/coupling	4.60%	0.00%	76.15%	17.57%	0.42%	1.26%	1.76%
Power Train	201	2	104	104	4	2	417
	48.20%	0.48%	24.94%	24.94%	0.96%	0.48%	3.08%
Fuel System	51	0.00%	46	20	0.83%	2	120
	42.50%	0.00%	38.33%	16.67%		1.67%	0.89%
Exhaust	50.00%	0.00%	25.00%	2	1 8.33%	0.00%	12 0.09%
		0.00%		26	8.33 % 4	0.00%	
E Headlights	70 60.87%	0.00%	14	25	4	0.87%	115 0.85%
E Tail Lights	12 11.54%	0.00%	72 69.23%	16 15.38%	3 2.88%	1 0.96%	104 0.77%
			32				54
Turn Signal	11 20.37%	0	32 59.26%	8	2 3.70%	1	0.40%
	20.37%	0.00%	45	42	3.70%	0	174
Suspension	48.85%	0.00%	45	24.14%	1.15%	0.00%	1.28%
	40.00%	0.00%	1	0	2	1	9
Cruise Control	55.56%	0.00%	11.11%	0.00%	22.22%	11.11%	0.07%
	42	0.00%	17	9	1	0	69
E Body/Doors	42 60.87%	0.00%	24.64%	13.04%	1.45%	0.00%	0.51%
	7012	27	3271	2865	316	64	13555
TOTAL	51.73%	0.20%	24.13%	2005	2.33%	0.47%	100.00%

3.3 C052 Number of Vehicles

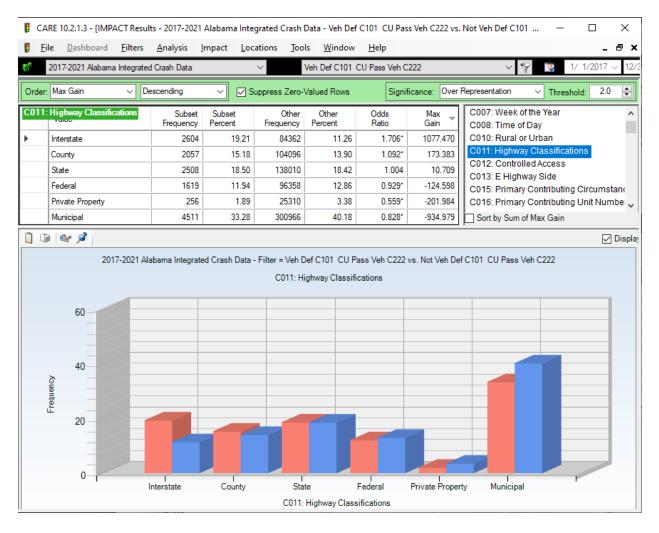
This attribute plays a large role in many of those discussed below. Single vehicle crashes are over-represented, as are all multi-vehicle crashes with three or more vehicles, except that of five vehicles. Two-vehicle crashes are under-represented with 0.664 of the proportion that occurs in non-vehicle-defect crashes. The Odds Ratio indicates that single vehicle crashes occur over twice their expected proportion.

3.4 C019 Most Harmful Event

What types of crashes are caused by these vehicle defects? The next two pages contain the cross-tabulation for the most harmful events for each of the passenger vehicle types.


2017-2021 A	Nabama Integrated C	rash Data	\sim	Veh Def C101 CU F	ass Veh C222	~	P 1/ 1	1/20
Suppress Zero Val	lues: Rows and Col	umns 🗸 Select	Cells: 🔳 🗸 🛞	9 Co	lumn: Causal Unit (C	U) Type ; Row: E Mo	ost Harmful Event	@
	Passenger Car	Station Wagon	Pick-Up (Four- Tire Light Truck)	E Sport Utility Vehicle (SUV)	E Mini-van	E Passenger Van	TOTAL	1 '
Ran Off Road Right	199	2	49	51	7	0	308	1
Ran Off Road Straight	22	0	7	8	2	0	39	
Ran Off Road Left	88	0	26	35	6	0	155	
Evasive Action (Swerve/Brake)	17	0	10	8	3	0	38	
Downhill Runaway	4	0	3	2	0	0	9	
Cargo/Equipment Loss or Shift	7	0	22	8	1	0	38	
Vehicle Defect/Componen	165	1	122	72	6	1	367	
Separation of Units	1	0	12	3	0	0	16	
Overturn/Rollover	251	1	245	291	11	9	808	
Jackknife	0	0	13	7	0	1	21	
Fire/Explosion	85	1	50	52	5	3	196	
Immersion	0	0	2	2	1	0	5	
Non-Contact Vehicle	5	0	4	2	0	0	11	
Fell/Jumped from Motor Vehicle	3	0	2	1	0	0	6	
Thrown or Falling Object	10	0	11	2	0	0	23	
Other Non- Collision	29	0	23	18	0	2	72	
Collision with Non Motorist: Pedestri	12	0	3	1	4	0	20	
Collision with Non -Motorist: Pedalcy	3	0	0	2	0	0	5	
Collision with Vehicle in Traffic	3245	13	1458	1233	164	29	6142	
Collision with Vehicle in (or from	104	0	43	33	4	1	185	
Collision with Parked Motor Veh	250	1	101	85	13	1	451	
Collision with Railway Vehicle/T	3	0	1	0	1	0	5	1
Collision with Animal: Deer	9	0	1	2	0	0	12	
Collision with Animal: Farm/Ran	1	0	1	0	1	0	3	
Collision with Animal: Other	1	0	0	1	0	0	2	
Collision with Falling/Shifting Ca	3	0	15	6	0	1	25	
Collision with Work Zone/Maint	2	0	1	1	0	0	4	
Collision with Other Non-Fixed	59	0	118	58	1	4	240	
Collision with Bridge Abutment/	71	0	19	25	3	0	118	

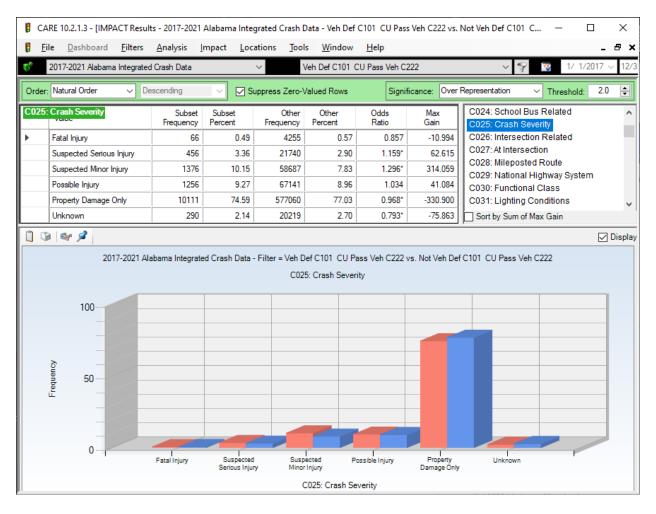
3.4 C019 Most Harmful Event (continued)


CARE 10.2.1.3	- [Crosstab Results	- 2017-2021 Alabar	ma Integrated Cras	h Data - Filter = Veh	Def C101 CU Pass	Veh C222]	- 0	×	
🚦 <u>F</u> ile <u>D</u> ashb	ooard <u>F</u> ilters <u>A</u>	<u>A</u> nalysis <u>C</u> rossta	b <u>L</u> ocations <u>T</u>	ools <u>W</u> indow	<u>H</u> elp		_ (5 ×	
2017-2021 /	Alabama Integrated C	rash Data	~	Veh Def C101 CU P	Pass Veh C222	~	9 1/ 1	1/201	
Suppress Zero Va	lues: Rows and Colu	umns 🗸 Select	Cells: 🔳 🔻 %	Column: Causal Unit (CU) Type ; Row: E Most Harmful Event					
	Passenger Car		Pick-Up (Four- Tire Light Truck)	E Sport Utility Vehicle (SUV)	E Mini-van	E Passenger Van	TOTAL	^	
Collision with Bridge Support/C	6	0	3	3	1	0	13		
Collision with Overhead Object/	6	0	1	9	1	0	17		
Collision with Culvert Headwall	42	0	16	24	0	0	82		
Collision with Ditch	391	1	134	125	15	2	668		
Collision with Embankment	90	0	40	33	2	1	166		
Collision with Curb/Island/Raise	76	1	5	14	2	0	98		
Collision with Guardrail Face	192	0	57	67	10	2	328		
Collision with Guardrail End	58	0	26	20	1	0	105		
Collision with Concrete Barrier	230	0	74	95	6	1	406		
Collision with Cable Barrier	155	1	42	53	7	1	259		
Collision with Other Traffic Barri	4	0	1	1	0	0	6		
Collision with Tree	408	2	242	147	15	3	817		
Collision with Utility Pole	191	0	79	77	6	0	353		
Collision with Light Pole (Break	24	0	11	8	3	0	46		
Collision with Light Pole (Non-B	25	0	7	8	1	1	42		
Collision with Traffic Signal Pole	5	0	5	1	0	0	11		
Collision with Sign Post	88	0	25	29	4	1	147		
Collision with Other Post/Pole/S	24	0	14	12	1	0	51		
Collision with Fence	95	2	27	40	2	0	166		
Collision with Mailbox	53	0	12	17	1	0	83		
Collision with Impact Attenuator	1	0	1	1	0	0	3		
Collision with Other Fixed Objec	165	1	58	56	4	0	284		
Crossed Centerline	8	0	5	2	0	0	15		
Crossed Median	1	0	1	0	0	0	2		
Re-entering Roadway	3	0	0	1	0	0	4		
Other	22	0	23	13	1	0	59		
TOTAL	7012	27	3271	2865	316	64	13555		

3.5 C023 Manner of Crash

The following presents a summary of the Manner of Crash for passenger car vehicle defect crashes. It gives insight especially into those crashes that did not involve just a single vehicle. The top three in the table below are over-represented, but Head-On (front to front only) has almost identical proportions (2.15% and 2.14%) for the vehicle defects and the control group. All of the other items are under-represented, meaning that the control subset (crashes not involving vehicle defects) have proportions that are greater than those of defective vehicles.

3.6 C011 Highway Classifications


All other things being equal, it is expected that each Highway Classification will have the same proportion of defective vehicle crashes as the defective vehicles traveling on it over the course of the study. This distribution varies sharply from that of large trucks, especially in the Municipal road category. While Interstate highways still show close to twice (1.706) the expected proportion, the proportion of total vehicle defect crashes in Interstate highways is 19.21% for passenger cars, while it was over twice that at 50.36% for large trucks. See the cross-tabulation below for one potential cause of tire problems.

3.7 C222 Vehicle Defects by C224 Impact Speed

Tire blowouts and tread depth issues tend to occur at higher speeds, as shown in the following cross-tabulation of impact speeds by vehicle defect. This accounts for their increased occurrence on higher-speed roadways (e.g., Interstates). It also accounts for their increased severity, which is covered in the next section.

		s - 2017-2021 Alaba <u>A</u> nalysis <u>C</u> rossta	-		h Def C101 CU Pas Help	s Veh C222]		-	×
	Nabama Integrated		~	Veh Def C101 CU		~	· 💡 😨 1/	1/2017 ~ 12/31/2	
Suppress Zero Va	lues: Rows and Co	olumns 🗸 Selec	t Cells: 🔳 🗸 🚿	9	Colu		beed at Impact ; Row	: CU Contributing Ve	hicle Defect 🛛 ญ
	36 to 40 MPH	41 to 45 MPH	46 to 50 MPH	51 to 55 MPH	56 to 60 MPH	61 to 65 MPH	66 to 70 MPH	71 to 75 MPH	76 to 80 MPH
Brakes	321	351	152	145	62	47	43	15	7
Steering	47	130	57	91	35	38	50	16	7
E Tire Blowout/Separatio	91	195	129	213	150	252	536	102	45
E Improper Tread Depth	91	159	106	217	143	154	136	33	25
Wheels	40	75	43	75	37	39	54	5	3
E Wipers	5	7	0	5	0	1	0	0	1
Windows/Windshi eld	1	6	2	3	0	5	4	0	0
E Mirrors	4	1	1	5	0	1	0	0	0
Trailer Hitch/Coupling	14	28	9	20	18	8	15	1	0
Power Train	9	29	11	23	14	12	43	3	0
Fuel System	8	6	4	10	3	3	9	0	0
Exhaust	0	1	0	1	1	0	1	1	0
E Headlights	9	13	5	11	1	5	3	0	0
E Tail Lights	1	2	4	3	1	2	1	0	1
Turn Signal	1	1	1	0	1	0	0	0	0
Suspension	10	14	12	22	7	10	13	2	0
E Cruise Control	1	0	0	3	0	0	1	0	0
E Body/Doors	2	1	2	3	3	5	10	0	0
TOTAL	655	1019	538	850	476	582	919	178	89
¢									:

3.8 C025 Crash Severity

The severities of vehicle defect crashes are not nearly as reduced (comparatively speaking) with the passenger car subset as we saw they were with large trucks. The difference in Fatal Injury is not statistically significant, and the increases in both Suspected Serious Injury and Suspected Minor Injury types are significantly higher in proportion than what is expected from the non-vehicle-defect group. To analyze this attribute further, a cross-tabulation was run that analyzed the various severity levels by the vehicle defect type, as given below.

-	- [Crosstab Result	s - 2017-2021 Alaba	ma Integrated Cras	h Data - Filter = Veł	n Def C101 CU Pass	Veh C222] ·	- □ >
Eile Dashb	oard <u>F</u> ilters	<u>A</u> nalysis <u>C</u> rossta	b <u>L</u> ocations]	ools <u>W</u> indow	<u>H</u> elp		- 8
2017-2021 A	labama Integrated (Crash Data	~	Veh Def C101 CU F	Pass Veh C222	~	9 1/
Suppress Zero Val	ues: Rows and Co	lumns 🗸 Select	Cells: 🔳 🛛 📆	Second Column	n: Crash Severity ; Ro	w: CU Contributing	Vehicle Defect 🥻
	Fatal Injury	Suspected Serious Injury	Suspected Minor Injury	Possible Injury	Property Damage Only	Unknown	TOTAL
Brakes	5	107	550	644	4441	144	5891
	7.58%	23.46%	39.97%	51.27%	43.92%	49.66%	43.46%
Steering	1	47	116	94	814	30	1102
chooning	1.52%	10.31%	8.43%	7.48%	8.05%	10.34%	8.13%
ETire	16	129	291	222	1967	45	2670
lowout/Separatio	24.24%	28.29%	21.15%	17.68%	19.45%	15.52%	19.70%
E Improper Tread	40	102	232	145	1065	24	1608
Depth	60.61%	22.37%	16.86%	11.54%	10.53%	8.28%	11.86%
Wheels	1	24	56	44	621	12	758
Wilcels	1.52%	5.26%	4.07%	3.50%	6.14%	4.14%	5.59%
E Wipers	0	3	5	5	50	2	65
E wipers	0.00%	0.66%	0.36%	0.40%	0.49%	0.69%	0.48%
Vindows/Windshi	0	2	7	8	82	2	101
eld	0.00%	0.44%	0.51%	0.64%	0.81%	0.69%	0.75%
E Mirrors	0	0	3	5	38	1	47
E Mirrors	0.00%	0.00%	0.22%	0.40%	0.38%	0.34%	0.35%
Trailer	0	5	19	11	201	3	239
Hitch/Coupling	0.00%	1.10%	1.38%	0.88%	1.99%	1.03%	1.76%
D	0	7	31	26	350	3	417
Power Train	0.00%	1.54%	2.25%	2.07%	3.46%	1.03%	3.08%
E 10 1	0	3	7	4	103	3	120
Fuel System	0.00%	0.66%	0.51%	0.32%	1.02%	1.03%	0.89%
F 1 1	0	0	0	1	11	0	12
Exhaust	0.00%	0.00%	0.00%	0.08%	0.11%	0.00%	0.09%
	0	8	20	15	69	3	115
E Headlights	0.00%	1.75%	1.45%	1.19%	0.68%	1.03%	0.85%
	1	5	15	9	71	3	104
E Tail Lights	1.52%	1.10%	1.09%	0.72%	0.70%	1.03%	0.77%
	0	2	2	4	42	4	54
Turn Signal	0.00%	0.44%	0.15%	0.32%	0.42%	1.38%	0.40%
	1	9	20	16	124	4	174
Suspension	1.52%	1.97%	1.45%	1.27%	1.23%	1.38%	1.28%
	0	1	2	2	3	1	9
E Cruise Control	0.00%	0.22%	0.15%	0.16%	0.03%	0.34%	0.07%
	1	2	0.13%	1	59	6	69
E Body/Doors	1.52%	0.44%	0.00%	0.08%	0.58%	2.07%	0.51%
	66	456	1376	1256	10111	290	13555
TOTAL	0.49%	3.36%	10.15%	9.27%	74.59%	2.14%	100.00%
	0.43%	3.30%	10.10%	3.21%	/4.03%	Z. 14 %	100.00%

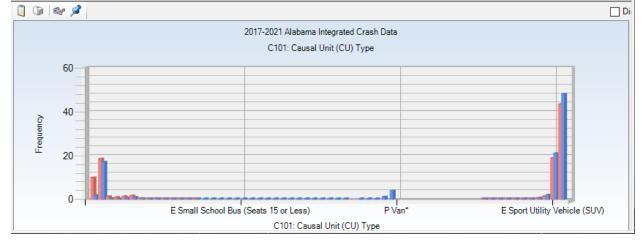
3.9 C222 Vehicle Defects by C025 Crash Severity

Clearly tire issues are the major factors for both severe injury and deaths. The two tire defects are quite different in the way that they cause crashes. Tire Blowout/Separation is quite intuitive in the way it would cause a loss of control. Improper Tread Depth, however, would usually have other contributing factors, such as a wet road surface, speed, or both to result in the loss of control. No doubt, tire issues rise to the top concern of passenger car crashes. Brake defects are a distant second priority, albeit with a much higher overall frequency (5,891 for brakes, as compared to the tire issues of 2,670 for blowouts, and 1,608 for tread depth).

3.10 C208 CU Model Year

6	2017-2021 Alabama Integr	rated Crash Data	а	~	Veh D	ef C101 CU F	Pass Veh C22	22 ~ 💡 🏆 1/ 1.
Order:	Max Gain 🗸 🗸	Descending	~	Suppres	s Zero-Valueo	d Ro Significa	ance: Over	Representation V Threshold: 2.0
C208:	CU Model Year	Subset Frequency	Subset Percent	Other Frequency	Other Percent	Odds Ratio	Max Gain	C208: CU Model Year
•	1993	122	0.95	2619	0.39	2.456*	72.331	
	1994	190	1.48	3894	0.57	2.573*	116.151	
	1995	236	1.83	5099	0.75	2.440*	139.298	
	1996	270	2.10	5926	0.87	2.402*	157.614	
	1997	364	2.83	8590	1.27	2.234*	201.092	
	1998	375	2.92	10148	1.50	1.949*	182.544	
	1999	490	3.81	13732	2.02	1.882*	229.574	
	2000	622	4.84	17604	2.60	1.863*	288.142	
	2001	643	5.00	18923	2.79	1.792*	284.128	
	2002	695	5.40	22498	3.32	1.629*	268.328	
	2003	827	6.43	27043	3.99	1.613*	314.133	
	2004	840	6.53	30831	4.55	1.437*	255.294	
	2005	926	7.20	33463	4.93	1.459*	291.379	
	2006	843	6.55	36088	5.32	1.232*	158.596	
	2007	806	6.27	39454	5.82	1.077	57.760	
	2008	690	5.36	34592	5.10	1.052	33.967	
	2009	411	3.20	22694	3.35	0.955	-19.389	
	2010	421	3.27	26885	3.96	0.826*	-88.871	
	2011	426	3.31	30181	4.45	0.744*	-146.379	
	2012	461	3.58	33901	5.00	0.717*	-181.928	
	2013	417	3.24	36679	5.41	0.599*	-278.613	
	2014	400	3.11	36881	5.44	0.572*	-299.443	
	2015	434	3.37	39800	5.87	0.575*	-320.802	
	2016	368	2.86	37326	5.50	0.520*	-339.883	
	2017	263	2.04	33188	4.89	0.418*	-366.406	
	2018	186	1.45	22693	3.35	0.432*	-244.370	
	2019	137	1.07	15788	2.33	0.458*	-162.417	Sort by Sum of Max Gain
1	i (@ ∮							
			:	2017-2021 Ala	abama Integra	ited Crash Da	ata	
				C20	08: CU Model	Year		
	8				_	_		
Frequency		a U	ah		hh	ÍP	m1i	
	0	1997		2002		2007		2012 2017
		1557		2002	C208- CU M		4	2017

All years with less than100 crashes were removed. The significant over-represented model years are from 1993 through 2006. It is reasonable to expect that older vehicles would have more problems in this regard. However, the maximum year is 2005 with 926 Vehicle Defect crashes.


3.11 All Vehicles Tire Issues Further Analysis

The passenger car vehicle defect highest killer was in tire issues. Over five years there were 2,670 crashes caused by blowouts/tire separation, and 1,608 crashes caused by tread depth issues over the five years of the study (4,278 total for tire issues). While the cross-tabulation in Section 3.9 indicates that tread depth was a higher cause of death with 40, as opposed to blowouts, which had 16, there is no implication that the difference between these two numbers is statistically significant. The 56 tire defect fatal crashes resulted in a total of 73 fatalities (14.6 fatalities per year).

These two tire issues account for almost 85% of the passenger car vehicle defect fatalities, and the next highest (brakes) had only about 7.58%, with the remaining being distributed one-each among the other attribute values. It is clear that tire issues are head and shoulders over all other vehicle defect issues when it comes to passenger car fatalities.

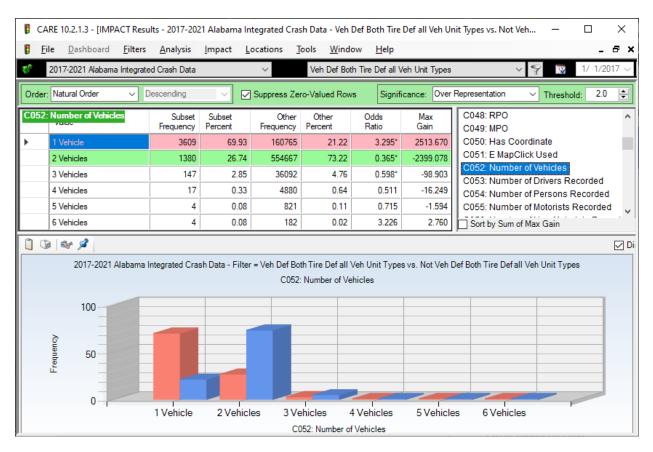
This being the case, a subset was formed of the 5,161 defective tire cases (for all vehicles, including large trucks) in an effort to flush out the demographics and focus in on the source of the tire problems. A listing of the causal units included is given in the display on the next page. The number in the Subset Frequency column is the number of tire-related crashes that each of these units had over the five years of the study.

E	ile <u>D</u> ashboard <u>F</u> ilters <u>A</u> nalysis <u>I</u>	mpact <u>L</u>	ocations	Tools	<u>W</u> indow	<u>H</u> elp		- 8
	2017-2021 Alabama Integrated Crash Data		\sim	Veh D	ef Both Tire	Def all Veh	Unit Types	✓ ♥ 1/ 1/2017
)rder	Max Gain 🗸 Descending	~ 2	Suppress	Zero-Value	d Rows	Significa	nce: Over	Representation V Threshold: 2.0
101	: Causal Unit (CU) Type	Subset requency	Subset	Other requency	Other Percent	Odds Ratio	Max Gain	C063: Has Railroad Crossing Number C080: CMV Involved
	E Tractor/Semi-Trailer	512	9.92	14540	1.92	5.168*	412.936	C081: E Has Truck Bus Supplement
	Pick-Up (Four-Tire Light Truck)	955	18.50	129460	17.09	1.083*	72.958	C101: Causal Unit (CU) Type
	E Single-Unit Truck (3 Axles or Less)	69	1.34	3089	0.41	3.279*	47.954	C102: CU Non-Motorist Indicator
	E Truck (6 or 7) with Trailer	49	0.95	2136	0.28	3.367*	34,447	C103: CU Commercial Motor Vehicle Inc C104: CU Left Scene
	Motorcycle	70	1.36	5260	0.69	1.953*	34.162	C104: CO Left Scene C105: CU Driver Age Range 1
	E Single-Unit Truck (2-Axle/6-Tire)	85	1.65	7511	0.99	1.661*	33.826	C106: CU Driver Age Range 2
	Motor Home/Recreational Vehicle	26	0.50	401	0.05	9.516*	23.268	C107: CU Driver Raw Age
	E Tractor/Doubles	14	0.27	193	0.03	10.647	12.685	C108: CU Driver Race C109: CU Driver Gender
	E Passenger Van	24	0.47	2278	0.30	1.546	8.479	C110: CU Driver Residence Distance
	E Motor Coach/Motor Home	3	0.06	69	0.01	6.381	2.530	C111: CU Driver License State
	E Truck Tractor Only (Bobtail)	5	0.10	406	0.05	1.808	2.234	C112: CU Driver First License Class
	E Other Vehicle Seating 9 or More	2	0.04	104	0.01	2.823	1.291	C113: CU Driver Second License Class
	E Tractor/Triples	1	0.02	12	0.00	12.231	0.918	C114: CU Driver License Status C115: CU Driver CDL Status
	E Other Heavy Truck (Cannot Classify)	5	0.10	713	0.09	1.029	0.142	C116: CU DL Restriction Violations #1
	E Low Speed Vehicle	1	0.02	156	0.02	0.941	-0.063	C117: CU DL Restriction Violations #2
	E Other Motorized Cycle/Low Speed Vehicle	1	0.02	176	0.02	0.834	-0.199	C118: CU Endorsement Violations #1
	E 4-Wheel Off Road ATV	2	0.04	591	0.08	0.497	-2.027	C119: E CU Endorsement Violations #2 C120: E CU Driver Employment Status
	Station Wagon	10	0.19	1835	0.24	0.800	-2.502	C121: CU Driver Condition
	E Other Passenger Vehicle	4	0.08	967	0.13	0.607	-2.588	C122: CU Driver Officer Opinion Alcohol
	E Van or Mini-Van	1	0.02	776	0.10	0.189	-4.287	C123: CU Driver Officer Opinion Drugs
	E Other Bus (Seats More than 15)	3	0.06	1113	0.15	0.396	-4.583	C124: CU Driver Alcohol Test Type Giver C125: E CU Driver Drug Test Type Giver
	E Cargo Van (10000 lbs or Less)	30	0.58	5900	0.78	0.746	-10.198	C126: CU Driver Alcohol Test Results
	E Mini-van	77	1.49	15763	2.08	0.717*	-30.397	C127: E CU Driver Drug Test Results
	E Sport Utility Vehicle (SUV)	973	18.85	159276	21.03	0.897*	-112.185	C128: CU Vehicle Initial Travel Direction
	Passenger Car	2239	43.38	363737	48.02	0.903*	-239.226	Sort by Sum of Max Gain

3.11.1 Severity of all Tire Defect Crashes (all vehicle types)

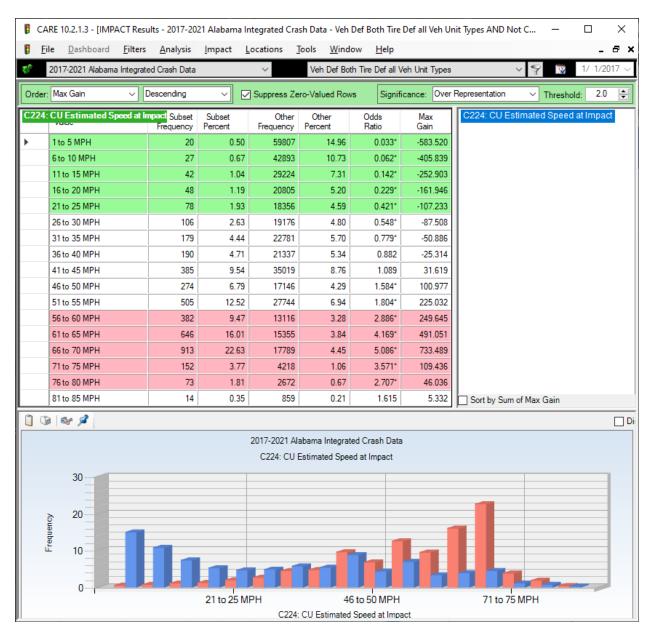
The following gives a summary by severity as compared all tire defect crashes to all other crashes that occurred in the five year period.

CA	RE 10.2.1.3 - [IMPACT Res	ults - 2017-202	21 Alabama In	tegrated Cras	ih Data - Veh I	Def Both Tire I	Def all Veh Un	nit Types vs. Not Veh —	
🖡 <u>E</u> il	le <u>D</u> ashboard <u>F</u> ilters	<u>A</u> nalysis	<u>I</u> mpact <u>L</u>	ocations <u>T</u>	ools <u>W</u> indo	w <u>H</u> elp			_ 8 :
6 2	2017-2021 Alabama Integrat	ed Crash Data		\sim	Veh Def Bot	n Tìre Def all Ve	eh Unit Types	~ 💡	1/ 1/2017 ~
Order:	Natural Order 🗸 🗸	Descending	~ 🗆	Suppress Zer	o-Valued Row	s Signific	cance: Over	Representation V Threshold	l: 2.0 🜩
C025:	Crash Sevenity	Subset Frequency	Subset Percent	Other Frequency	Other Percent	Odds Ratio	Max Gain	C023: E Manner of Crash C024: School Bus Related	^
•	Fatal Injury	70	1.36	4251	0.56	2.417*	41.037	C025: Crash Severity	
	Suspected Serious Injury	280	5.43	21916	2.89	1.875*	130.681	C026: Intersection Related C027: At Intersection	
	Suspected Minor Injury	587	11.37	59476	7.85	1.449*	181.776	C027: At Intersection C028: Mileposted Route	
	Possible Injury	404	7.83	67993	8.98	0.872*	-59.252	C029: National Highway Syste	em
	Property Damage Only	3745	72.56	583426	77.02	0.942*	-230.020	C030: Functional Class	
	Unknown	75	1.45	20434	2.70	0.539*	-64.222	Sort by Sum of Max Gain	
0) 🕼 🖉								V (
	2017-2021 Alabama	Integrated Cras	sh Data - Filter		th Tire Def all \ 25: Crash Seve		vs. Not Veh D	Def Both Tire Defall Veh Unit Types	
	100								
	Suendaria Solution								
	0	Fatal Injury	Suspecte Serious Inj		pected F	Possible Injury	Property Damage Onl	Unknown	
			Serious Inj		C025: Crash S	everity	Damage Ohi	7	

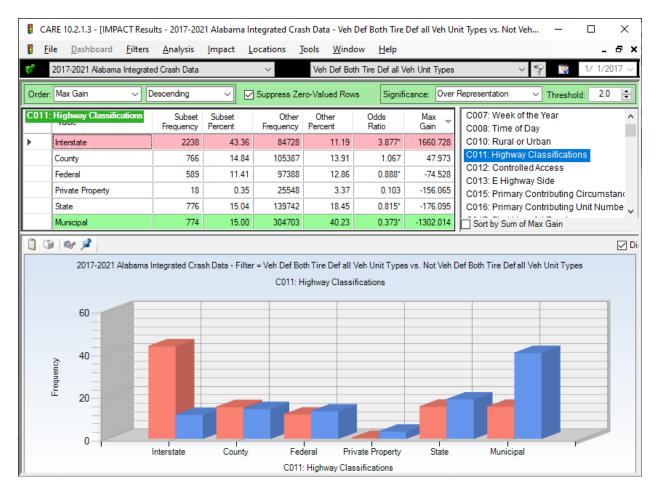

Notice that the proportion of Fatal Injury for the Vehicle Defect crashes (1.36) is over twice (2.417 times) what it is for the non-vehicle-defect control crashes. The two highest injury categories are also over-represented significantly higher than expectation (Odds Ratios 1.875 and 1.449). Thus, we can conclude that these are not minor problems, and something should probably be done to address them, if nothing other than a PSA concentrating on tire defect issues.

3.11.2 C015 Primary Contributing Circumstances

The following comparison for Primary Contributing Circumstances indicates that tire problems are usually coupled with another fault related to speed in order to create the crashes.


🔋 CA	RE 10.2.1.3 - [IMPACT Results - 2017-2	2021 Alabar	ma Integra	ted Crash D	ata - Veh D	ef Both Tir	e Def all Veh	Unit Types vs. Not Veh — 🗆 🗙
Eil	e <u>D</u> ashboard <u>F</u> ilters <u>A</u> nalysis	: <u>I</u> mpact	<u>L</u> ocatio	ons <u>T</u> ools	s <u>W</u> indo	w <u>H</u> elp		_ & ×
6	2017-2021 Alabama Integrated Crash Da	ta	~	V	eh Def Both	Tire Def all	Veh Unit Type	es 🗸 🖓 🌠 1/ 1/2017 🗸
Order:	Max Gain V Descending	~	Supp	ress Zero-V	alued Rows	Signi	ficance: Ov	er Representation V Threshold: 2.0 🜩
C015:	Primary Contributing Circumstance	Subset Frequency	Subset Percent	Other Frequency	Other Percent	Odds	Max 🚽	C011: Highway Classifications C012: Controlled Access
▶ _	Defective Equipment	2982	57.78	9175	1.21	47.703*	2919.489	C013: E Highway Side
	Driving too Fast for Conditions	763	14.78	29218	3.86	3.833*	563.931	C015: Primary Contributing Circumstane C016: Primary Contributing Unit Number
	E Other - No Improper Driving	177	3.43	8338	1.10	3.116*	120.191	C017: First Harmful Event
	Over Speed Limit	151	2.93	10628	1.40	2.085*	78.589	C018: Location First Harmful Event Rel t
	E Over Correcting/Over Steering	124	2.40	7698	1.02	2.364*	71.552	C019: E Most Harmful Event 🗸
	E Ran off Road	119	2.31	16921	2.23	1.032	3.713	Sort by Sum of Max Gain
0	1 😪 🖉							☑ D
		irash Data -		n Def Both Ti Primary Co				h Def Both Tire Def all Veh Unit Types
Frequency								
	U I	Failed to Yield to Pedestrian ir		C015: Prim	-	I or Load Shift		E Fatigued/Asleep

The vast majority of these crashes are single vehicle, as shown by the next display.


3.11.3 C052 Number of Vehicles (involved in these crashes)

Impact speeds for these crashes is relatively high, further reinforcing the speed cofactor, and as would be expected, they occur more in open country (rural areas).

3.11.4 C224 Estimate Speed at Impact

Speed at impact is a major factor indicating that the problem with tire defects are further compounded by excessive speeds.

3.11.5 C011 Highway Classification

County roads are about as expected (neither over- nor under-represented) perhaps because it is difficult to travel these roads at too high a rate of speed. Federal and State roads are under-represented in favor of Interstates (as are Municipal roads).

Summary of other findings. The causal unit model year follows about the same as given above in Section 3:10, with the older vehicles (up to 1993 for this subset) being over-represented. Driver ages that are over-represented are those from 18-30 years of age. Wet roadways have over twice their expected number of crashes (we suspect that further analysis will show this coming from the low tread tires as opposed to the blowouts). Males are over-represented by about 33% higher proportion than expected. While day of the week is close to the DUI pattern (over-representations on weekend days), the time of day favors the two or three hours before the typical rush hours.

4.0 Discussion on Potential Inspection System for Alabama

Most of the promotion of vehicle inspection systems within the states has been conducted in isolation. If you consider the loss of one life and multiply it over the five-year death toll of 70 fatal crashes (14 per year), the cost of implementing a vehicle inspection system is indeed costbeneficial. If we had *certain knowledge* that even one fatality could be saved, unlimited resources would be justified. But no such certain knowledge exists.

What is rarely considered is the downside of any proposed expenditure. Please see general considerations for traffic safety investments that is given under the title of "Considerations for Optimal Traffic Safety Allocation" linked to here:

http://www.safehomealabama.gov/wp-content/uploads/2019/03/Traffic-Safety-Innov-2017-04.pdf

The failure is one of not seeing the effect that saving these 14 lives per year (or whatever savings traffic safety professionals might estimate) is going to have on failing to save even more of the total fatalities (close to 1,000 fatalities per year averaged over the last decade). Advocates (in all areas) often fail to see the downside of their actions. As a result, the consumption of traffic safety resources rarely if ever produces the maximum savings of fatalities. Most traffic safety countermeasures have several downsides, but one that is always present is the zero-sum game of the total safety budget, which any given program requiring resources must deplete.

So, for example, if a given countermeasure costs \$100,000 per year these dollars will have to come from other traffic safety programs. It is not a matter of going to the general fund; and even if it were, the same argument could be made: i.e., that this \$100k should go to a countermeasure that has a higher benefit to cost ratio.

The cost of most countermeasures is fairly easy to obtain; however, the benefits that any one of them will produce is highly speculative, and we must turn to the traffic safety professionals to estimate these benefits. There are a number of resources to this effect available from NHTSA e.g., *Countermeasure that Work:*

https://www.nhtsa.gov/sites/nhtsa.gov/files/2021-09/Countermeasures-10th_080621_v5_tag.pdf.

Few studies of effectiveness have been performed for vehicle inspection systems for a variety of reasons. But the major issue is in isolating the number of crashes that will be reduced by implementing the program. "The program" itself is not at all defined, since there are variations in every state that has "implemented a program." So it is impossible to aggregate the results.

Please review the findings above. Recognize that large truck inspections are handled already by FMCSA mandates. In essence, they already have an inspection system. So, we are mainly talking about the second half of the findings given above – those for passenger cars. The major problem with passenger cars was found to be tires. Further analyses can and should be done if programs to address this problem are to be developed. This can easily generate the target groups

and the demographics that should be employed to develop the most effective tire countermeasure program.

The big question that must be answered: is a full scale inspection system necessary to deal with the issue of car tires. Could one be developed that just concentrated on these issues and perhaps the third item, which was brakes? Would a PI&E program be just as (perhaps more) effective, but at a fraction of the cost? Could tire providers be involved in not repairing tires that are prone to be defective?

We are not prepared to answer these questions at this point; but we feel that raising them is sufficient to getting decision-makers moving in the right direction. We urge decision-makers to consider how many lives might be saved if the cost of implementing an inspection program were to be invested in other more cost-effective countermeasures. We stand ready to provide additional information from crash records to help them if they feel that such an effort would be warranted.

For more information on this subject from NHTSA and other sources, please see: http://www.safehomealabama.gov/tag/defects-recalls/