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1 Problem

More and more city planners are taking into consideration smart mobility solutions to address transporta-
tion needs and central to smart transportation systems is access to real-time data. For example, self-driving
cars offer independence for seniors and people with disabilities, greater road safety, cost savings through
ride sharing, increased productivity, reduced congestion, and reduced fuel use and carbon emissions. But
what type of information and data is needed for city planners to accommodate smart transportation sys-
tems? Visual data is extremely rich in information and algorithms can process the data and extract the
information. However, bandwidth is limited and too much time is needed to transfer visual data to remote
computers for analysis. This work focused on developing computer vision algorithms for analyzing visual
data and computing and sharing the resulting analytics and summary data in real-time. Algorithms were
developed to understand vehicle motion in 3D space and time, and to track the pose of people in 3D. These
algorithms are vital to computing analytics on real data in the presence of occlusions, cluttered scenes, and
varied lighting conditions.

Vehicle Reconstruction in 3D Space and Time: The shapes, positions and velocities of vehicles in
3D reveal instantaneous traffic information, which can be aggregated to automate traffic monitoring and
facilitate driver assistance systems. Depth sensors have been used to reconstruct 3D information, but are
too expensive to deploy at city scale. In contrast, video surveillance cameras are already widely installed,
but most surveillance systems are only able to collect 2D information such as 2D bounding boxes, re-
identification and 2D trajectories. Due to the ambiguity between 3D location and 2D image projection, it is
impossible to reconstruct 3D vehicles from these cameras directly without any priors. Recently, many deep
learning-based reconstruction methods have been proposed to estimate 3D shape and position from visual
appearance, but they are sensitive to training data and hard to transfer to new scenes. For example, models
trained on egocentric views perform poorly on traffic surveillance cameras because of differences in view
angle and background. Unstable and inaccurate detections cause 3D trajectory reconstruction to fail over
time. Although many works attempt to enforce temporal consistency in reconstruction and video analysis,
they focus on short intervals such as over a few frames or seconds. For this work, we recognized that the key
to accurate vehicular 4D reconstruction (i.e. recovering 3D shape and motion) is exploiting the consistency
in long-term (several minutes or greater) repetitious activity, i.e. vehicles passing an intersection clustered
into groups with similar motion patterns. Using longitudinal consistency as self-supervision, we adapted
a pre-trained keypoint detector to new scenes it never saw before, and obtain higher accuracy 2D and 3D
keypoints without any manual annotation.

Multi-Person Articulated 3D Pose Tracking: We address the problem of tracking and reconstructing
3D articulated poses of multiple individuals captured in an arbitrary number of camera. This task requires
identifying the number of people in the scene, reconstructing their 3D body joints into consistent skeletons,
and associating 3D body joints over time. We do not make any assumption on the number of available
camera views and focus on real-world scenarios that often include multiple close-by interacting individuals,
fast motions, self- and person-person occlusions. A key challenge in such scenarios is that people might
strongly overlap and expose only a subset of body joints due to occlusions or truncations by image boundaries,
which makes it more difficult to reliably reconstruct and track articulated 3D human poses. Most multi-view
strategies rely on multi-stage inference to first estimate 2D poses in each frame, cluster same person poses
across views, reconstruct 3D poses from clusters based on triangulation, and finally link 3D poses over time.
Solving each step in isolation is sub-optimal and prone to errors that cannot be recovered in later stages. This
is even more true for monocular methods where solving each step in isolation often represents an ill-posed
problem. Our method is a top-down approach that simultaneously addresses 3D body joint reconstructions
and associations in space and time of multiple persons.



2 Approach

2.1 Vehicle Reconstruction in 3D Space and Time

Figure 1: Long term repetitious vehicular activity is
used as self-supervision to compute accurate 2D and
3D keypoints, trajectories and velocities from a single
fixed camera. Reconstruction accuracy improves sig-
nificantly over 20 minutes at this intersection as com-
pared to methods that enforce consistency over short
periods (a few frames to seconds).

Starting from off-the-shelf 2D keypoint detections
and camera intrinsics, our method reconstructs 3D
keypoints with an active shape model, fits an an-
alytic trajectory model to each vehicle’s 3D poses
over time, and applies a novel method to cluster the
vehicle trajectories in 3D. Later, the accurate 2D
keypoints and 3D mean trajectories of each clus-
ter (denoted as 2D and 3D experts) accumulated
over the entire video are used to improve 2D and
3D keypoints in a self-supervised manner as shown
in Fig. 1. We refer to this process as longitudinal
self-supervision. Our main approach is summa-
rized below and the entire framework is shown in
Fig. 2:(a) Joint optimization for longitudinal recon-
struction: Consistent reconstruction of diverse mo-
tion and poses from single-view by joint optimiza-
tion over all vehicles in long-term videos. (b) Scene-
specific repetitious activity clustering: Projecting 3D
trajectories to subspaces with strong separability to
suppress noise from imperfect detection and recon-
struction, and then clustering the trajectories into
fine-grained motion groups. (c) 2D/3D longitudinal
self-supervision: Selecting and accumulating accu-
rate 2D keypoints via geometry consistency to refine erroneous keypoints; Learning geometric correspondence
between 3D mean trajectories and individual poses as a posterior to improve 3D reconstruction.

The versatility and generalizability of our approach was demonstrated using traffic videos of 78k frames
captured by 18 single view fixed cameras at city intersections. The datasets are from a variety of sources:
(a) live YouTube cameras, (b) our iPhone cameras, and (c) the AI City Challenge dataset. Our method was
also applied to traffic tasks such as velocity estimation, anomaly detection and vehicle counting.

Figure 2: Framework for self-supervised 4D reconstruction of repetitious activity. Our method takes off-
the-shelf 2D keypoint detections as input, reconstructs 3D keypoints with an active shape model, fits an
analytic trajectory model to each vehicle’s 3D poses along with frames, and accumulates them over time.
Then, for 2D self-supervision, good keypoints from initial detections are selected as “2D experts” to refine
bad 2D keypoints. For 3D, the accumulated 3D trajectories are clustered and the mean trajectories are used
as “3D experts” to refine 3D poses. The reconstruction could be applied to traffic analysis such as velocity
estimation and anomaly analysis.
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2.2 Multi-Person Articulated 3D Pose Tracking

Our top-down approach simultaneously addresses 3D body joint reconstructions and associations in space
and time of multiple persons. At the core of our approach is a novel spatio-temporal formulation that
operates in a common voxelized feature space obtained by casting per-frame deep learning features from
single or multiple views into a discretized 3D voxel volume. First, a 3D CNN is used to localize each person
in the voxel volume. Then, a fixed spatio-temporal volume around each person detection is processed by a
4D CNN to compute short-term person-specific representations. Overlapping representations at neighboring
time steps are further scored based on attention aggregation and linked using a differentiable matcher.
Finally, 3D body joints of the same person are consistently predicted at each time step based on merged
person-specific representations. Notably, all components are implemented as layers in a single feed-forward
neural network and are thus jointly learned end-to-end.

Our approach relies on a novel spatio-temporal formulation that allows simultaneous 3D body joint re-
construction and tracking of multiple individuals. In contrast to multi-person 3D pose estimation approaches
who similarly aggregate per frame information in 3D voxel space, we address a more challenging problem of
multi-person 3D pose tracking and propose end-to-end person-specific representation learning. Our method
does not make assumptions on the available number of camera views and performs reasonably well even in
the purely monocular setting. Remarkably, using only a single view allows achieving similar MPJPE 3D
joint localization error compared to five-view settings. In contrast to multi-person 2D pose tracking methods
that rely on short-term spatio-temporal representation learning, our approach operates on the aggregated
spatio-temporal voxel volume and provides a richer hypothesis comprising of tracked 3D skeletons.

The approach also formulates a novel learnable tracking formulation that allows extending person-specific
spatio-temporal representation learning to arbitrary-long sequences. In contrast to methods that use a
heuristic pairwise tracking score based on pose distance and perform matching using the Hungarian method,
our method relies on an attention aggregation layer and a differentiable representation matching layer based
on the Sinkhorn algorithm. Importantly, we match person-specific representations instead of the determined
body pose tracklets, which allows learning of more expressive representations. This approach improves
tracking accuracy but also improves joint localization.

3 Methodology

3.1 Vehicle Reconstruction
in 3D Space and Time

3.1.1 Background

Figure 3: 3D reconstruction coordinate frames. Ve-
hicle 3D keypoints are computed in camera coordi-
nates. The world coordinate is defined with XY as
the ground plane, in which we perform analytic model
fitting and repetitious activity clustering. Map co-
ordinates are defined based on Google maps, whose
XY plane is also the ground. This is used to estimate
real-world location and speed. Yellow cross landmarks
transform world to map coordinates.

We use three coordinate systems, i.e. camera, world
and map coordinates as shown in Fig. 3. The cam-
era coordinate is defined with the origin at the focal
point, parallel to image plane; while in world coor-
dinates the ground plane and axis points upwards.
The two coordinate systems are associated by a rigid
transform. In world coordinates each object’s tra-
jectory is represented on the ground plane. Finally,
we have a map coordinate system consistent with
Google maps. The transform from world coordi-
nates to map coordinates involves rotation, transla-
tion, and scaling that are estimated using annotated
landmarks on input image and Google map (repre-
sented as yellow crosses in Fig. 3). Each new camera
only needs these annotations for our 4D automatic
self-supervision pipeline. We refer to each object’s
appearance in one frame as an instance. For a video
of frames, a total of unique objects are captured

3



with keypoints for each instance. The 3D position is in camera coordinates and the 2D position is in image
coordinates of the corresponding keypoint of an instance in the captured frame.

3D Shape Model: The object 3D keypoints are parameterized by an active shape model to regularize
shape optimization. The mean shape of all object models, and their principle components are computed
from an object CAD model dataset. Then each object’s actual shape is formulated as linear combination of
mean shape with the top principal components. For each object, we track it over time and enforce the shape
parameter to be constant for its instances in different frames.

3D Trajectory Model: We use an h-th order polynomial as analytic model to fit each object’s 3D motion.
For simplicity, we convert all the poses into world coordinate so only the motion in x, y direction needs to be
considered. We observe that in most of the experiments, h = 3 fits the model well (turns, including U-turns,
and lane changes) but higher order may be necessary for rare complex motions. The reconstructed object
poses are used to solve the parameters by minimizing loss. For a given frame, the coordinate and tangent
is predicted by the solved parameters and should be close to the reconstructed pose. Both the tangent and
rotation matrix are converted into a direction vector. A regularizing term is added for third order coefficients.

3.1.2 Self-Supervised 4D Reconstruction

In this section, we explain our approach to utilize longitudinal consistency in repetitious vehicular activity
for accurate 4D reconstruction. Fig. 2 shows the overall pipeline with the three stages described below.

Joint Optimization For Longitudinal Reconstruction We propose to jointly optimize for the shape
and pose of objects moving in the scene over long durations of time. We show clear improvement in recon-
struction accuracy compared to previous proposed methods, which either optimize for shape or pose over
short durations (few consecutive frames). Specifically, exploiting rigidity over consecutive frames and a con-
stant ground plane constraint show that our joint reconstruction outputs are more accurate and consistent
compared to previous state of the art methods.

Pose Initialization: We use HRNet to detect 2D bounding boxes and keypoints for objects in each frame.
We pass these detections into a Visual Intersection-Over-Union (V-IOU) multi-object tracker. We enforce
each object is rigid over frames using the tracking ids. Then, the 3D rotation and translation is initialized
using RANSAC based EPnP to account for inaccurate keypoints from detector.

Joint Optimization over all Objects: The 3D keypoint locations can be computed from the shape model
by optimizing the shape coefficients vector and pose jointly for all the vehicles in all the frames. We exploit
the following geometric constraints to enforce the joint consistency in reconstruction over long term. (1)
Reprojection loss: the error between the projection of each object’s 3D keypoints and its respective 2D
detections. (2) Joint planar loss: This loss constrains all the vehicles in the long-term video to be as close as
possible to a ground plane. We formulate this error as the squared distance in camera coordinates between
the vehicle’s bottom center and the ground plane.

3.1.3 Scene-Specific Repetitious Activity Clustering

Capturing repetitious motion patterns over a long duration plays an important role in deciphering higher
level semantics of the environment. We observe and demonstrate using experiments that such higher order
semantics are much more distinguishable in 3D compared to 2D. Thus, we first fit a polynomial model to
each object’s 3D poses to suppress noise and reduce data dimension. Then, the trajectory parameters are
clustered hierarchically and projected to sub-spaces with good cluster-separability using a novel scene-specific
clustering approach.

Hierarchical Scene-Specific Clustering: Repetitious activity, like vehicles moving in the same lanes
every day, can be used as a signal for supervision. The method proposes using additional scene specific
constraints for clustering such activity. We illustrate this with an example of separating the vehicles into
lane-specific activity as shown in Fig. 4.
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Figure 4: Demonstration of our hierarchical clustering in birds-eye view. Left: First stage clusters and the
average direction of the blue cluster. Right: Second stage clustering. Trajectories are projected along their
average direction, maximizing the spatial difference between near clusters. The blue trajectories from left
are projected onto axis b and are distinguished very well into two clusters, while they are almost overlapped
on axis a.

We face two challenges here: (a) vehicles on different lanes can be close to each other (see blue and purple
lines in Fig. 4) and (b) trajectories of the same lane have different shapes and positions. The issues are
further exaggerated by imperfect tracklets and keypoints. We solve these issues with a hierarchical approach.
First, we directly cluster trajectory parameters using a Gaussian Mixture Model. We observe vehicles in
different directions are in different clusters (orange in Fig. 4), but lanes in the same direction (blue and
purple) cannot be distinguished. Thus, in the second stage of the hierarchy, our observation is that each
sub activity will have a scene-specific dominant direction that can be used to cluster. For this, we find a
direction to project trajectories belonging to the same initial cluster from 2D to 1D. Then each trajectory is
projected along the average direction. In Fig. 4, axis a is the average direction. Blue and purple trajectories
are projected along axis a to axis b. We notice the overlapping between the two lanes is mostly eliminated,
so they become easily distinguishable. Our method is unsupervised and takes scene-specific information (say,
the geometry of traffic lanes) into account to maximize the separation between similar clusters (lanes). For
each fine-grained cluster, we then save the average of the parameters of all trajectories.

3.1.4 2D and 3D Longitudinal Self-Supervision

Humans generally improve their cognitive skills from observations and repetitious behaviors generally rein-
force inference. Inspired from human cognition, we propose self-improvement in detection both in 2D and
3D using the clustered mean shapes. These mean shapes act as anchors for any new observation and show
a clear improvement in detection in 2D and 3D over passage of time as shown later in the results.

2D Longitudinal Self-Supervision: Learning-based detectors produce precise as well as erroneous key-
points. We would like to use the accurate detections to improve the badly localized keypoints. We distinguish
the good ones from the erroneous by using a threshold on the reprojection error. All the inliers below the
threshold are considered as 2D experts and integrated into a 2D expert pool. Each instance above the
threshold is considered erroneous and needs to be refined. To refine each erroneous instance, it is necessary
to retrieve a 2D expert from the expert pool with a similar shape as the instance. Since the camera is
fixed and object motion is constrained, we can assume that objects with bounding boxes of similar size and
location tend to have similar 3D shapes and pose, so we extract temporal bounding boxes as the feature
for matching. For an instance at frame m, we concatenate its 2D bounding box’s 4 corner coordinates
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from frame m − k to m + k as the feature for retrieval. Similar features for all 2D experts are stored
for matching. The erroneous instance finds its guiding 2D expert from the expert pool by minimizing `2
distance of bounding box features using the nearest neighbor algorithm. Two vehicles having similar bound-
ing box features need not be perfectly aligned in 3D, so we transform the bounding box and keypoints to
overlap between instance and the 2D expert. We optimize for scale and translation from the 2D expert
bounding box to the instance bounding box. Then the optimized transformations are applied to the 2D
expert’s keypoints. If the distance between the transformed expert keypoint and the instance keypoint is
above a threshold, the instance keypoint is considered as misclassified and updated with the expert keypoint.

3D Longitudinal Self-Supervision: We use 3D mean trajectories learned from repetitious activity clus-
tering as our 3D experts. Since 3D experts represent the typical motion over a long duration, they act as a
strong regularization to refine erroneous 3D poses. To refine each 3D pose, we find a correspondence between
the estimated 3D pose and the 3D experts for supervision. For each object, we first find out from all the 3D
experts, the one most similar to the object’s motion. Considering the object’s pose in a frame and the 3D
expert of one specific cluster, we find a point on the 3D expert minimizing its distance to the object position.
We compute the Chamfer distance from this object’s trajectory to the 3D expert as the sum of such distance
over all frames where this object appears. From 3D experts of different clusters, we select the one with the
minimal Chamfer distance to the object’s trajectory. If the selected 3D expert’s Chamfer distance is less
than a threshold, it is used to refine the object pose. For the pose in a frame , we find its closest point on
the 3D expert when calculating Chamfer distance.

3.2 Multi-Person Articulated 3D Pose Tracking

To learn person tracking and pose estimation in 3D we build multiple differentiable layers with intermediate
supervisions. The pipeline is illustrated in Fig 5. Our network is made up of three main blocks, each one
with an associated loss. The first block is a person detection network in 3D voxel space. Given person
detections, a 4D CNN extracts a spatio-temporal representation of each detected person over a short period
of time. In order to track people, we then solve an assignment problem between the set of descriptors for
two frames. All matched descriptors which overlap are then merged into a single descriptor which is finally
deconvolved into a 3D pose for the person tracked at central frame.

Figure 5: The complete pipeline of tessetrack has been illustrated. Initially, the video feed from multiple
cameras is passed through shared HRNet to compute the features required for detection and 3D pose tracking.
The final layer of the HRNet is passed through a 3D convolution to regress to the center of the human 3D
bounding boxes. Each of the hypotheses is combined with the HRNet final layer to create a spatio-temporal
Tube called tesseract. We use a learnable 3D tracking framework for a person association over time using
spatio-temporal person descriptors. Finally, the associated descriptors are passed through deconvolution
layers to infer the 3D pose. Note that the framework is end-to-end trainable except for the NMS layer in
the detection network.
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3.2.1 Person Detection Network

Our approach starts with a multi-view person detection network (PDN) trained to detect people in 3D at
a specific time instance. We use HRNet as our backbone for extracting image-based features at each frame.
We use the pre-final layer of the network and pass it through a single convolution layer to convert it into
a feature. The feature maps coming from all the camera views are then aggregated into a 3D voxelized
volume by an inverse image projection method without fusing the 2D joint heatmaps in 3D but with the
richer feature vectors picked from the pre-final layer of HRNet. The voxel grid is initialized to encompass
the whole space observed by the cameras. Using the camera calibration data, each voxel center is projected
into the camera views.

We aggregate all the feature vectors picked in image space by concatenating them and passing through
a shallow network with a softmax layer. This produces a unique feature vector. We thus end up with a
data structure of the size of the feature vector times the dimensions of the voxel grid. We then apply 3D
Convolutions to this volume to generate detection proposals. For each person, we train the network to
detect its “center”, which is defined as the midpoint between neck and center of the hips. The loss at each
time is expressed directly as a distance between the expected heatmap and the output heatmap. We apply
non-maximum suppression (NMS) on the 3D heatmaps and only retain the detections with large score.

3.2.2 Spatio-Temporal Descriptors and Tracking

Figure 6: The learnable tracking framework. The in-
put is the tesseract features for multiple detected hu-
mans at two different time instances. The output is an
assignment matrix providing the correspondence be-
tween the detected persons at different times.

For each detected person we create a spatio-
temporal volume of fixed dimension centered on
the person and use a 4D CNN to produce a
short time description of the person around the
detection frame. We call this spatio-temporal
volume a tesseract as it is a 4D volume of
size R×T×X×Y×Z, where T represents tem-
poral window size and X,Y ,Z are the dimen-
sions of the cuboid centered on the detected
person. The goal of extending the volume
in time around the detection frame is twofold.
First, using a temporal context allows to bet-
ter estimate the joint positions in the central
frame, and especially to extrapolate/interpolate
occluded joints or to handle pose or appear-
ance ambiguities in a single frame. Second,
extending a person’s description in time gen-
erates a descriptor which overlaps with adja-
cent frames, hence producing descriptors that
can be matched by similarity for tracking pur-
poses.

Tesseract Convolutions: The input to this sub-
network is still the output of the HRNet pre-final
layer which is cast in 3D at each time stamp. We
follow the same procedure as for the person detection network to generate the features for each time instance
of the tesseract. The tesseract is then passed through multiple 4D convolutions and max pooling layers to
produce a reduced size tesseract feature. These features represent a spatio-temporal descriptor of a person
centered around a detection. This bottleneck descriptor is used in both the tracking and pose estimation
modules.

Attention Aggregation: Before temporal matching, as illustrated in Fig 6, we pass the features into a
Graph Neural Network to integrate contextual cues and improve the features distinctiveness. We use two
types of undirected edges: self edges, connecting features belonging to the same time instance and cross
edges, connecting features from adjacent time instances. We use a learnable message passing formulation
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to propagate the information in the graph. The resulting multiplex network starts with a high-dimensional
state for each node and computes at each layer an updated representation by simultaneously aggregating
messages across all incident edges for all nodes.

Temporal Matching Layer: The final features of the attention module are passed through a trained
matching layer, which produces an assignment matrix. For a given time instance, we consider the features
of people at the current time and another time instance. As in the standard bipartite graph matching
formulation, an optimal assignment is a permutation matrix which maximizes a total score. We compute
the similarity between the descriptor at the two time instances. As opposed to learned visual descriptors,
the matching descriptors are not normalized, and their magnitude can change as per the feature during
training to reflect the prediction confidence. To let the network suppress some predicted persons (false
detections) and to handle changes in the number of persons in the scene, we augment each set with a dustbin
so that matching is always computed on a fixed length feature vectors. This leads to optimal assignments
for each available detection and the rest unassigned dustbins always correspond one-to-one with the next
time instance.

Following recent end-to-end learning approaches which include an optimal assignment step, we use the
Softassign algorithm to solve the assignment problem by a differentiable operator. The Softassign algorithm is
based on Sinkhorn iterative matrix balancing, which projects an initial score matrix into a doubly stochastic
matrix by iteratively normalizing the matrix along rows and columns. The Softassign algorithm can be
efficiently implemented on GPUs by unrolling a fixed number of Sinkhorn iterations. After a fixed number
iterations, the final score matrix and the association for the detection is then extracted. Since all of the
above layers are differentiable, we train the tracking module in a supervised manner with respect to the
ground truth.

3.2.3 3D Pose Estimation

The last module of the network computes the persons’ 3d poses using the persons descriptors and their
tracking.

Spatio-temporal descriptors merging: If T is the tesseract temporal window size, then after tracking
a person for T frames, we obtain T spatio-temporal descriptors of this person which overlap at a com-
mon time and encode the person’s pose and motion over a total time interval of length 2T − 1. We thus
merge all these descriptors to estimate the person’s pose at their common time. As previously described,
we use a softmax-based merging strategy and the result is a single tesseract description for the central frame.

Tesseract deconvolution: The merged tesseract is finally passed through multiple 4D deconvolution layers
to produce 3D heatmaps of person’s joints at time t. The predicted joint position kqPred is obtained by a
soft-argmax operator, i.e. by a heatmap scores-weighted average of the voxel centers. We then combine
two loss functions for the pose estimation task: a L1 distance computed on the keypoints positions and a
loss on the response of the heatmap at the ground truth joint position. The gradient is propagated back to
the initial images, including through the HRNet backbone which is shared by the detection module and the
tracking + pose estimation modules.

4 Data

4.1 Vehicle Reconstruction in 3D Space and Time

TRAFFIC4D Dataset: This is a novel dataset proposed in the paper to analyze data at intersections
over a long duration. It includes 10 videos (70k frames) obtained from multiple sources: 3 live YouTube
streams from static cameras and 7 views captured by iPhone 6 fixed on tripods. This dataset is divided
into 3 stereo pairs and 4 single view videos. The stereo pairs were captured to evaluate the accuracy of
3D reconstruction. We sampled frames from the stereo pairs and computed 3D keypoints locations using
the triangulation of manually annotated 2D keypoints. We also annotate the ground truth trajectory clusters.
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AI City Challenge Dataset: There are few public datasets for fixed camera reconstruction. Track 1 of
AI City Challenge 2019 has 5 monocular camera sets, two of them taken at intersections with enough traffic,
so we choose these two sets having 8 cameras, 8k frames in total, each captured for around 5 minutes. The
ground truth trajectories are manually annotated and projected on to 3D ground plane using homography.
The reconstructed vehicles should lie on or close to these annotated trajectories and are used as metric for
evaluating the reconstruction.

4.2 Multi-Person Articulated 3D Pose Tracking

We selected the following standard 3D human pose estimation datasets for experimental evaluation. All
datasets provide calibrated camera poses.

Human3.6M was captured from 4 cameras with a single human performing multiple actions. The dataset
contains 8 actors performing 16 actions captured in controlled indoor settings. Motion capture was used
to create ground truth 3D poses. We use 6 sequences to train and 2 sequences (S09, S11) to test our algorithm.

TUM Shelf was captured indoors using 5 stationary cameras, with 4 people disassembling a shelf. The
dataset provides sparse 3D pose annotations. Severe occlusions and random motion of the persons are the
key challenges.

TUM Campus was captured outdoors using 3 stationary cameras, with 3 people interacting on campus
grounds. Similar to Shelf, it provides sparse 3D pose annotations. The dataset is challenging for 3D pose
estimation due to a small number of cameras and wide baseline views.

CMU Panoptic was built to understand human interactions in 3D. It contains 60 hours of data with 3D
poses and tracking information captured by 500 cameras. We follow [?] and sample the same 5 cameras for
evaluation, and use the same sequences for training. We split the training and testing sequences following [?].

Tagging was captured in unconstrained environments where people are interacting in a social setting. There
are no constraints on the motion of the cameras or the number of persons during the capture. This ”in the
wild” setting makes this dataset particularly interesting for 3D pose tracking. However, since no GT pose
annotations are available, we only use this dataset for qualitative evaluation.

5 Analyses and Results

5.1 Vehicle Reconstruction in 3D Space and Time

Figure 7 compares reconstruction on the stereo pairs of TRAFFIC4D. We observe higher PCK accuracy
compared to other methods in 2D and 3D. Specifically, when no longitudinal self-supervision is used, our
second view (v2) and 3D PCK are significantly higher than the others, indicating our reconstruction is
more consistent in 3D. We emphasize that the global co-planar loss contributes to the improvement in
reconstruction accuracy as it regularizes all the vehicles’ poses in the video for better spatial consistency.
Moreover, our method achieves better accuracy after 2D and 3D longitudinal self-supervision.
Figure 8 plots keypoint refinement results of 2D longitudinal self-supervision. The heatmaps illustrate that
2D experts supervise most frequently at image borders, occluded places, or positions far from the camera
as expected from failures from the initial detector. For each instance, the three nearest neighbor experts
(vehicles with accurate keypoints predicted from original detectors) are visualized. We notice the same vehicle
correctly detected at neighbor frames or a different vehicle with a similar appearance from a different time
instance are used as experts. Observe that the retrieved experts have accurate shape ensuring the success of
longitudinal learning. Table 1 shows improvement on A3DP for our method compared to baselines on S01
and S02 sets of AI City dataset. Similar to Fig. 7, adding 2D and 3D longitudinal self-supervision improves
A3DP as well.
Accuracy vs. Video Length: The key idea of longitudinal self-supervision is to accumulate information
over time, so the duration of the video being used is a critical parameter affecting keypoint accuracy. For
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Figure 7: Accuracy of reconstruction with respect to varying window size (α) on TRAFFIC4D stereo pairs.
Left and right are keypoints projected to the second view of stereo and reconstructed in 3D respectively.
“Recon” indicates using our joint optimization for reconstruction. Note that longitudinal self-supervision
(denoted L2D, L3D) consistently outperforms other baselines. Averaging over α = [0.05, 0.3], v2/3D PCK
shows 35%/53% relative and 16%/12% absolute improvement over the nearest baseline.

Table 1: Comparing to state of the art trajectory reconstruction methods on AI City dataset using A3DP
metric. ”Mean”, ”c-l”, and ”c-s” denote mean, loose and strict criteria with different thresholds relative
(”Rel”) to depth. Traffic4D shows an average improvement of 14.62%(in absolute terms) and 34.2% (in
relative terms) in comparison on both sequences, without any manual supervision.

S01 S02
Method L2D L3D A3DP-Rel A3DP-Rel

mean(in %) c-l(in %) c-s(in %) mean(in %) c-l(in %) c-s(in %)

OccNet 9.30 45.44 8.90 12.21 51.54 6.98
Apollo 24.91 43.14 25.72 31.14 53.72 31.00

Traffic4D 28.03 47.55 24.84 41.04 63.86 44.68
Traffic4D X 33.11 57.49 30.96 44.27 63.90 46.99
Traffic4D X X 39.42 63.88 40.16 45.86 65.59 47.11

each sub-sequence split based on time specified, we construct the 2D expert pool and 3D experts from it
and use them to refine over keypoints on the complete sequence. Figure 9 left illustrates the effect on recon-
struction accuracy for varying sub-sequence length on TRAFFIC4D dataset stereo cameras. We observe a
clear increase in accuracy with an increase in sub-sequence length illustrating that longitudinal supervision
enhances the reconstruction accuracy. The accuracy converges after a specific duration of time emphasizing
that the activity clustering for the sequence has been learned. We observe similar improvements in PCK
accuracy on single view cameras as shown on the right in Fig. 9.

Repetitious Activity Clustering Analysis: Table 2 reports the proportion of correctly clustered trajec-
tories in each video of TRAFFIC4D dataset. Notice that 3D clustering outperforms 2D in all the videos and
our method achieves the highest accuracy in most sequences. The reason is trajectories in the same direction
but belonging to different lanes look quite near each other if they are distant or the camera looks straight
forward, while 3D clustering eliminates the view angle and perspective effect by converting them to 3D.

5.2 Multi-Person Articulated 3D Pose Tracking

Most recent works on multi-person articulated 3D pose tracking focus on evaluation of 3D pose reconstruc-
tion accuracy using MPJPE or 3D-PCK. However, this is not clear how existing methods advance actual
body joint tracking accuracy in multi-person scenarios. We thus intend to fill in this gap and propose a
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Figure 8: Examples of keypoint refinement via 2D longitudinal self-supervision. First row: Visualization of
2D experts. The heatmaps show frequency of 2D experts being used to refine other instances. 2D experts are
used mostly at image border, occluded or far away places. The vehicle patches show the top three nearest
neighbors retrieved from expert pool (good keypoints predicted by initial detector), which have very similar
shape and pose to the refined instance; Second row: Initial erroneous keypoints from detector; Third row:
Refined keypoints after 2D longitudinal self-supervision.

set of novel evaluation metrics for multi-person articulated 3D pose tracking. To that end, we build on the
popular Multiple Object Tracking (MOT) and articulated 2D pose tracking metrics and extend them to
the 3D pose use case. The proposed metrics require predicted 3D body poses with track IDs. First, for
each pair of (predicted pose, GT pose) 3D-PCK is computed. Predicted and GT poses are matched to each
other by a global matching procedure that maximizes per pose 3D-PCK. Finally, Multiple Object Tracker
Accuracy (MOTA), Multiple Object Tracker Precision (MOTP), Precision, and Recall metrics are computed.

Evaluation details: Evaluation is performed on the Panoptic dataset using the proposed 3D MOTA metric.
In the following we compare FTDL to FTGL and FIG.

Impact of temporal representations on tracking: Results are shown in Tab. 3. Using temporal person
descriptors (FTDL and FTGL) significantly improves tracking accuracy compared to instantaneous person
descriptor (FIG). Using a end-to-end learnable tracking framework (FTDL) instead of a Hungarian matching
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Figure 9: The plot depicts PCK-α accuracy improving over time by using longitudinal self-supervision. We
observe 11% absolute and 16% relative improvement in average accuracy of 3D reconstruction and detections
over stereo cameras (left) in TRAFFIC4D dataset with 18 minutes of continuous learning. Here, at time
zero we use an off-the-shelf detector, while at 18 minutes we use a retrained detector from longitudinal
self-supervision. We observe similar accuracy boost in the single view cameras (right) of TRAFFIC4D
dataset.

Table 2: Comparing the accuracy of TRAFFIC4D clustering algorithm with previous clustering methods
MS, MBMS , AMKS. The metric used is proportion of correctly clustered trajectories (higher is better).
“2D” means clustering on trajectories using bounding box centers in image; “3D” means clustering on 3D
trajectories reconstructed by our approach. We observe that using our hierarchical clustering algorithm
improves the accuracy of clustering by 14.79% (in absolute terms) and 19.76% (in relative terms) with
respect to current state of the art (3D AMKS).

Seq 2D 2D 2D 3D 3D 3D
No. MS MBMS AMKS MS MBMS AMKS Traffic4D

001 57.32 63.59 66.10 75.31 66.10 73.22 90.37
002 60.68 59.83 60.68 64.10 76.92 83.76 82.05
003 48.18 52.27 49.54 62.27 61.36 66.81 90.90
004 59.32 41.04 66.04 68.28 79.85 75.74 93.28
005 51.73 53.06 54.40 56.00 56.53 68.00 86.67
006 68.07 67.60 69.95 64.78 63.85 67.14 85.44
007 62.20 64.56 66.14 75.59 71.65 84.25 91.34
008 41.44 47.75 49.55 45.05 45.95 58.55 91.89
009 57.89 63.90 67.66 73.30 78.19 83.08 86.09
010 60.16 62.60 65.85 75.61 73.17 77.24 85.36

algorithm (FTGL) further improves tracking accuracy. This can be attributed to the fact that the learn-
able descriptors matching can distinguish interacting people much better than graph-based tracking methods.

Robustness to number of cameras: We analyze the accuracy of 3D pose tracking with respect to a
varying number of cameras. Results are shown in Fig. 10 (right). While an increasing number of cameras
allows improving the accuracy of all variants, we observe that relying on spatio-temporal representation
learning results in significant tracking accuracy improvements specifically in the few cameras mode (FTDL
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Method Neck Head Shou. Elbow Wrist Hip Knee Ankle Avg
1*FIG 89.7 87.4 90.8 88.0 82.2 92.7 89.1 92.4 87.6

1*FTGL 93.9 91.7 93.0 92.1 87.4 94.4 93.9 94.6 92.1
1*FTDL 94.6 93.6 93.4 92.7 88.2 94.7 93.8 95.0 94.1

Table 3: 3D MOTA evaluations on the Panoptic dataset. Using an end-to-end learnable framework (FTDL)
systematically improves the accuracy of 3D pose tracking across all keypoints.

and FTGL vs. FIG). Furthermore, using a learnable tracklet matcher (FTDL) results in consistent increase
in tracking accuracy over a wide range of number camera views. Both observations underline the advantages
of the proposed formulation when only a few cameras are available. Finally, in the pure monocular setting,
FTDL achieves a reasonable 76% 3D MOTA accuracy, despite not being specifically tuned in this setting.
We envision that incorporating scene constraints and performing spatio-temporal articulated model fitting
should significantly boost the accuracy of in monocular setting.

Figure 10: Impact of number of cameras on body joint localization error (MPJPE) (left) and pose tracking
accuracy (3D MOTA) (right). Tessetrack (FTDL) shows the greatest advantage with lower number of
cameras.

6 Findings

6.1 Vehicle Reconstruction in 3D Space and Time

(1) Vehicle velocity estimation and activity visualization: Vehicle activity reconstruction provides insights
into driving behavior by estimating real world speeds. Each vehicle’s velocity vector in world coordinates
is obtained from trajectory by taking time derivatives. Fig. 11 shows the accurate reconstruction results of
individual vehicles, 3D mean trajectories and speed profile after longitudinal self-supervision. (2) Anomaly
analysis: As an application of our model, vehicular anomalies can be identified. The log likelihood of a
trajectory belonging to a specific cluster is obtained by sampling from the corresponding Gaussian component
in the clustering model. The trajectory is considered as an anomaly if its likelihoods are lower than a threshold
in all the clusters. Compared to previous anomaly detection methods purely in 2D, the 3D anomaly trajectory
also reveals the anomaly vehicle’s position and velocity in 3D real world. Fig. 12 shows the trajectories and
likelihood of anomalies.(3) Vehicle counting: The number of vehicles in each direction and lane is counted
based on cluster ids. The supplementary video and webpage show the results.

6.2 Multi-Person Articulated 3D Pose Tracking

Shown in Figure 13 is the output of Tessetrack on the Tagging sequence. The top two row portray the
projections of keypoints on two views, while the bottom row shows the 3D pose tracking. Observe smooth
tracking of people in the wild with moving cameras for long duration of time.
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Figure 11: The keypoints (first row) and 3D re-
constructions overlaid on Google map (second
row) at different times, as well as 3D mean tra-
jectories (third row) and velocities of the mean
trajectories (fourth row) for three intersections.
These mean trajectories represents typical vehi-
cle motions and are used for 3D longitudinal self-
supervision.

Figure 12: Automatic anomaly detection. The
plot shows different anomalies like vehicles mak-
ing forbidden left turn (Left column), sudden
stop in near collision (Right column) using our
method. Last row shows the anomaly’s log like-
lihood (red/green lines, p represents the proba-
bility) is much lower than the normal trajectories
(blue bars) in the cluster.

Figure 13: We illustrate the output of Tessetrack on the Tagging sequence. The top two row portray the
projections of keypoints on two views, while the bottom row shows the 3D pose tracking. Observe smooth
tracking of people in the wild with moving cameras for long duration of time.
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7 Conclusions

Vehicle Reconstruction in 3D Space and Time: We proposed a novel approach to reconstruct repeti-
tious vehicular activity in 4D from a single view using longitudinal self-supervision. Our algorithm takes as
input off-the-shelf 2D keypoint detections, optimizes 3D vehicle poses and clusters their motion in 3D space.
The accumulated 2D keypoints and trajectory clusters are then used to refine the 2D and 3D keypoints
without any human annotation. Experimental results show our self-learning framework greatly improves the
accuracy of detection and reconstruction on long term testing videos unseen by the detector. In the future,
longitudinal self-supervision could be extended to people or robot activity reconstruction with analogous
keypoint detectors and geometric constraints.

Multi-Person Articulated 3D Pose Tracking: Reliably reconstructing and tracking the 3D poses of
multiple persons in real-world scenarios using calibrated cameras is a challenging problem. In this work,
we address it by proposing a novel formulation, which jointly solves the tasks of tracking and 3D pose
reconstruction within a single end-to-end learnable framework. In contrast to previous piece-wise strategies
which first reconstruct 3D poses based on geometrical optimization algorithms and then subsequently linking
the poses over time, our method infers the number of persons in a scene and jointly reconstructs and tracks
their 3D poses using a novel 4D spatio-temporal CNN and a learnable tracking framework using differentiable
matching. Experimental evaluation on five challenging datasets show significant improvements not only in
multi-person 3D pose tracking but also in multi-person 3D pose reconstruction accuracy.

8 Recommendations

With the current and impending focus on improving traffic mobility through smart cities technologies, more
and more sensors are being deployed to the infrastructure. Sensors like cameras provide a wealth of knowledge
and information but require heavy computing to distil the information. Time-sensitive information and
applications also require low latency in terms of compute times but also transmission of information. This
work set out to address the technical challenges of detecting, tracking, and reconstructing vehicles and people
while addressing these challenges. Computer vision algorithms developed reliably detect and track vehicles
in 3D space and time, but also do the same for people and their pose. The algorithms enable computation
of various analytics that can be of interest to city planners, connected vehicles, etc. To demonstrate the
utility of these algorithms, they were applied to data from camera’s installed in the Pittsburgh area (with
remote and edge processing), as well as cameras installed throughout the world– those available through live
web streams. The process of transforming image data to analytic information is a compressive process that
transforms data from thousands of pixels every second to a small fraction of that, e.g., vehicle counts, people
counts, etc. The road infrastructure deserves attention, not just in standard maintenance, but in moving
towards a future where sensing and computing become a part of the infrastructure. This idea will enable the
potential for real-time information about activity on the road, which in turn can inform planning decisions
or even instantaneous actuation, e.g., transmitting information to driver assist path planning systems.
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